Peer-reviewed articles

GRUAN-related articles published in scientific journals

2024 (5), 2023 (9), 2022 (16), 2021 (10), 2020 (19), 2019 (16), 2018 (19), 2017 (10), 2016 (21), 2015 (11), 2014 (6), 2013 (8), 2012 (4), 2011 (3), 2010 (2), 2009 (2), total (157)

2024

  • Cimini 2024: Cimini, D., Barlakas, V., Carminati, F. et al. Anatomy of the uncertainty of satellite vicarious calibration using radiosondes: concepts and preliminary results for microwave radiometric observations. Bull. of Atmos. Sci.& Technol. 5, 9 (2024). https://doi.org/10.1007/s42865-024-00073-y
  • Heinemann 2024: Günther Heinemann, Lukas Schefczyk, Rolf Zentek; A model-based study of the dynamics of Arctic low-level jet events for the MOSAiC drift. Elementa: Science of the Anthropocene 12 January 2024; 12 (1): 00064. doi: https://doi.org/10.1525/elementa.2023.00064
  • Mashao 2024: Mashao, F.M.; Demoz, B.; Kifle, Y.; Klopper, D.; Chikoore, H.; Sakai, R.K.; Ayisi, K.K. An Appraisal of the Progress in Utilizing Radiosondes and Satellites for Monitoring Upper Air Temperature Profiles. Atmosphere 2024, 15, 387. https://doi.org/10.3390/atmos15030387
  • Meijer 2024: Meijer, V. R., Eastham, S. D., Waitz, I. A., and Barrett, S. R. H.: Contrail altitude estimation using GOES-16 ABI data and deep learning, Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, 2024.
  • Sugidachi 2024: Sugidachi, T., Fujiwara, M., Shimizu, K., Ogino, S.-Y., Suzuki, J., and Dirksen, R. J.: Development of a Peltier-based chilled-mirror hygrometer for tropospheric and lower stratospheric water vapor measurements, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-635, 2024.

2023

  • Borger 2023: Borger, C., Beirle, S., and Wagner, T.: A 16-year global climate data record of total column water vapour generated from OMI observations in the visible blue spectral range, Earth Syst. Sci. Data, 15, 3023–3049, https://doi.org/10.5194/essd-15-3023-2023, 2023.
  • Faber 2023: Faber, J., Gerding, M., and Köpnick, T.: Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures, Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, 2023.
  • Fassò 2023: Fassò, A.; Keernik, H.; Rannat, K. On the Kalman Smoother Interpolation Error Distribution in Collocation Comparison of Atmospheric Profiles. Axioms 2023, 12, 902. https://doi.org/10.3390/axioms12100902
  • Guo 2023: Guo, X., Wu, D., Wang, Z., Wang, B., Li, C., Deng, Q., & Liu, D. (2023). A review of atmospheric water vapor lidar calibration methods. WIREs Water, e1712. https://doi.org/10.1002/wat2.1712
  • Hicks-Jalali 2023: Hicks-Jalali, S., Mariani, Z., Casati, B., Leroyer, S., Lemay, F. & Crawford, R.W.(2023) An assessment of Arctic diurnal water-vapour cycles in Canada's weather forecast model and ERA5. Quarterly Journal of the Royal Meteorological Society, 149(755, 2550–2574. https://doi.org/10.1002/qj.4520
  • Prange 2023: Prange, M., Buehler, S. A., and Brath, M.: How adequately are elevated moist layers represented in reanalysis and satellite observations?, Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023, 2023.
  • Rannat 2023: Rannat, K.; Keernik, H.; Madonna, F. The Novel Copernicus Global Dataset of Atmospheric Total Water Vapour Content with Related Uncertainties from GNSS Observations. Remote Sens. 2023, 15, 5150. https://doi.org/10.3390/rs15215150
  • Trent 2023: Trent, T., Siddans, R., Kerridge, B., Schröder, M., Scott, N. A., and Remedios, J.: Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme, Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, 2023.
  • Zhang 2023: Zhang, L.; Ding, M.; Zheng, X.; Chen, J.; Guo, J.; Bian, L. Assessment of AIRS Version 7 Temperature Profiles and Low-Level Inversions with GRUAN Radiosonde Observations in the Arctic. Remote Sens. 2023, 15, 1270. https://doi.org/10.3390/rs15051270

2022

  • Agarwal 2022: Agarwal, A., Meijer, V. R., Eastham, S. D., Speth, R. L., and Barrett, S. R. H.: Reanalysis-driven simulations may overestimate persistent contrail formation by 100–250 %, Environ. Res. Lett., 17, 014045, https://doi.org/10.1088/1748-9326/AC38D9, 2022.
  • Beirle 2022: Beirle, S., Borger, C., Dörner, S., Kumar, V., and Wagner, T.: Calculating the vertical column density of O4 during daytime from surface values of pressure, temperature, and relative humidity, Atmos. Meas. Tech., 15, 987–1006, https://doi.org/10.5194/amt-15-987-2022, 2022.
  • Calbet 2022: Calbet, X., Carbajal Henken, C., DeSouza-Machado, S., Sun, B., and Reale, T.: Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems, Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, 2022.
  • Colombo 2022: Pietro Colombo and Alessandro Fassò: Quantifying the interpolation uncertainty of radiosonde humidity profiles, 2022 Meas. Sci. Technol. 33 074001; https://doi.org/10.1088/1361-6501/ac5bff
  • Dekhtyareva 2022: Dekhtyareva, A., Hermanson, M., Nikulina, A., Hermansen, O., Svendby, T., Holmén, K., and Graversen, R. G.: Springtime nitrogen oxides and tropospheric ozone in Svalbard: results from the measurement station network, Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, 2022.
  • Hoshino 2022: Hoshino, S., Sugidachi, T., Shimizu, K., Kobayashi, E., Fujiwara, M., and Iwabuchi, M.: Comparison of GRUAN Data Products for Meisei iMS-100 and Vaisala RS92 Radiosondes at Tateno, Japan, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-374, in review, 2022.
  • Ingleby 2022: Ingleby, B., Motl, M., Marlton, G., Edwards, D., Sommer, M., von Rohden, C., Vömel, H., and Jauhiainen, H.: On the quality of RS41 radiosonde descent data, Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, 2022.
  • Lee 2022a: Lee, S.-W., Kim, S., Lee, Y.-S., Choi, B. I., Kang, W., Oh, Y. K., Park, S., Yoo, J.-K., Lee, J., Lee, S., Kwon, S., and Kim, Y.-G.: Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator, Atmos. Meas. Tech., 15, 1107–1121, https://doi.org/10.5194/amt-15-1107-2022, 2022.
  • Lee 2022b: Lee, S.-W., Kim, S., Lee, Y.-S., Yoo, J.-K., Lee, S., Kwon, S., Choi, B. I., So, J., and Kim, Y.-G.: Laboratory characterisation and intercomparison sounding test of dual thermistor radiosondes for radiation correction, Atmos. Meas. Tech., 15, 2531–2545, https://doi.org/10.5194/amt-15-2531-2022, 2022.
  • Madonna 2022: Madonna, F., Tramutola, E., SY, S., Serva, F., Proto, M., Rosoldi, M., et al. (2022). The new Radiosounding HARMonization (RHARM) data set of homogenized radiosounding temperature, humidity, and wind profiles with uncertainties. Journal of Geophysical Research: Atmospheres, 127, e2021JD035220. https://doi.org/10.1029/2021JD035220 
  • Nielsen 2022: Nielsen, J. K., Gleisner, H., Syndergaard, S., and Lauritsen, K. B.: Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts, Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, 2022.
  • Rosoldi 2022: Rosoldi, M.; Coppa, G.; Merlone, A.; Musacchio, C.; Madonna, F. Intercomparison of Vaisala RS92 and RS41 Radiosonde Temperature Sensors under Controlled Laboratory Conditions. Atmosphere 2022, 13, 773. https://doi.org/10.3390/atmos13050773
  • von Rohden 2022: von Rohden, C., Sommer, M., Naebert, T., Motuz, V., and Dirksen, R. J.: Laboratory characterisation of the radiation temperature error of radiosondes and its application to the GRUAN data processing for the Vaisala RS41, Atmos. Meas. Tech., 15, 383–405, https://doi.org/10.5194/amt-15-383-2022, 2022.
  • Schneider 2022: Schneider, M., Ertl, B., Diekmann, C. J., Khosrawi, F., Weber, A., Hase, F., Höpfner, M., García, O. E., Sepúlveda, E., and Kinnison, D.: Design and description of the MUSICA IASI full retrieval product, Earth Syst. Sci. Data, 14, 709–742, https://doi.org/10.5194/essd-14-709-2022, 2022.
  • Wee 2022: Wee, T.-K.; Anthes, R.A.; Hunt, D.C.; Schreiner, W.S.; Kuo, Y.-H. Atmospheric GNSS RO 1D-Var in Use at UCAR: Description and Validation. Remote Sens. 2022, 14, 5614. https://doi.org/10.3390/rs14215614
  • Zhang 2022: Zhang, Y., Zhang, B., and Yang, N. (2022). Characteristics of Temperature and Humidity Inversions Based on High-Resolution Radiosonde Observations at Three Arctic Stations. Journal of Applied Meteorology and Climatology 61, 4, 415-428, https://doi.org/10.1175/JAMC-D-21-0054.1, 2022.

2021

  • Crewell 2021: Crewell, S., Ebell, K., Konjari, P., Mech, M., Nomokonova, T., Radovan, A., Strack, D., Triana-Gómez, A. M., Noël, S., Scarlat, R., Spreen, G., Maturilli, M., Rinke, A., Gorodetskaya, I., Viceto, C., August, T., and Schröder, M.: A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means, Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, 2021.
  • Graf 2021: Graf, M., Scheidegger, P., Kupferschmid, A., Looser, H., Peter, T., Dirksen, R., Emmenegger, L., and Tuzson, B.: Compact and lightweight mid-infrared laser spectrometer for balloon-borne water vapor measurements in the UTLS, Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, 2021.
  • Jing 2021: Jing, X.; Shao, X.; Liu, T.-C.; Zhang, B. Comparison of GRUAN RS92 and RS41 Radiosonde Temperature Biases. Atmosphere 2021, 12, 857. https://doi.org/10.3390/atmos12070857
  • Jorge 2021: Jorge, T., Brunamonti, S., Poltera, Y., Wienhold, F. G., Luo, B. P., Oelsner, P., Hanumanthu, S., Singh, B. B., Körner, S., Dirksen, R., Naja, M., Fadnavis, S., and Peter, T.: Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds, Atmos. Meas. Tech., 14, 239–268, https://doi.org/10.5194/amt-14-239-2021, 2021.
  • Ma 2021: Ma, Z., Li, Z., Li, J., Schmit, T. J., Cucurull, L., Atlas, R., & Sun, B. (2021). Enhance low level temperature and moisture profiles through combining NUCAPS, ABI observations, and RTMA analysis. Earth and Space Science, 8, e2020EA001402. https://doi.org/10.1029/2020EA001402
  • Madonna 2021: Madonna, F.; Summa, D.; Di Girolamo, P.; Marra, F.; Wang, Y.; Rosoldi, M. Assessment of Trends and Uncertainties in the Atmospheric Boundary Layer Height Estimated Using Radiosounding Observations over Europe. Atmosphere 2021, 12, 301. https://doi.org/10.3390/atmos12030301
  • Martucci 2021: Martucci, G., Navas-Guzmán, F., Renaud, L., Romanens, G., Gamage, S. M., Hervo, M., Jeannet, P., and Haefele, A.: Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne, Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, 2021.
  • Smale 2021: Dan Smale, Susan E. Strahan, Richard Querel, Udo Frieß, Gerald E. Nedoluha, Sylvia E. Nichol, John Robinson, Ian Boyd, Michael Kotkamp, R. Michael Gomez, Mark Murphy, Hue Tran & Jamie McGaw (2021) Evolution of observed ozone, trace gases, and meteorological variables over Arrival Heights, Antarctica (77.8°S, 166.7°E) during the 2019 Antarctic stratospheric sudden warming, Tellus B: Chemical and Physical Meteorology, 73:1, 1-18, DOI: 10.1080/16000889.2021.1933783
  • Sun 2021: Sun, B.; Calbet, X.; Reale, A.; Schroeder, S.; Bali, M.; Smith, R.; Pettey, M. Accuracy of Vaisala RS41 and RS92 Upper Tropospheric Humidity Compared to Satellite Hyperspectral Infrared Measurements. Remote Sens. 2021, 13, 173. https://doi.org/10.3390/rs13020173
  • Tu 2021: Tu, Q., Hase, F., Blumenstock, T., Schneider, M., Schneider, A., Kivi, R., Heikkinen, P., Ertl, B., Diekmann, C., Khosrawi, F., Sommer, M., Borsdorff, T., and Raffalski, U.: Intercomparison of arctic XH2O observations from three ground-based Fourier transform infrared networks and application for satellite validation, Atmos. Meas. Tech., 14, 1993–2011, https://doi.org/10.5194/amt-14-1993-2021, 2021.

2020

  • Almansa 2020: Almansa, A.F.; Cuevas, E.; Barreto, Á.; Torres, B.; García, O.E.; Delia García, R.; Velasco-Merino, C.; Cachorro, V.E.; Berjón, A.; Mallorquín, M.; López, C.; Ramos, R.; Guirado-Fuentes, C.; Negrillo, R.; de Frutos, Á.M. Column Integrated Water Vapor and Aerosol Load Characterization with the New ZEN-R52 Radiometer. Remote Sens. 2020, 12, 1424. https://doi.org/10.3390/rs12091424
  • Becker 2020: Becker, R., Maturilli, M., Philipona, R. et al. In situ sounding of radiative flux profiles through the Arctic lower troposphere. Bull. of Atmos. Sci.& Technol. (2020). https://doi.org/10.1007/s42865-020-00011-8
  • Dirksen 2020: Dirksen, R. J., Bodeker, G. E., Thorne, P. W., Merlone, A., Reale, T., Wang, J., Hurst, D. F., Demoz, B. B., Gardiner, T. D., Ingleby, B., Sommer, M., von Rohden, C., and Leblanc, T.: Managing the transition from Vaisala RS92 to RS41 radiosondes within the Global Climate Observing System Reference Upper-Air Network (GRUAN): a progress report, Geosci. Instrum. Method. Data Syst., 9, 337–355, https://doi.org/10.5194/gi-9-337-2020, 2020.
  • Dupont 2020: Dupont, J., M. Haeffelin, J. Badosa, G. Clain, C. Raux, and D. Vignelles, 2020: Characterization and Corrections of Relative Humidity Measurement from Meteomodem M10 Radiosondes at Midlatitude Stations. J. Atmos. Oceanic Technol., 37, 857–871, https://doi.org/10.1175/JTECH-D-18-0205.1.
  • Evan 2020: Evan, S., Brioude, J., Rosenlof, K., Davis, S. M., Vömel, H., Héron, D., Posny, F., Metzger, J.-M., Duflot, V., Payen, G., Vérèmes, H., Keckhut, P., and Cammas, J.-P.: Effect of deep convection on the tropical tropopause layer composition over the southwest Indian Ocean during austral summer, Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, 2020.
  • Fassò 2020: Fassò, A., Sommer, M., and von Rohden, C.: Interpolation uncertainty of atmospheric temperature profiles, Atmos. Meas. Tech., 13, 6445–6458, https://doi.org/10.5194/amt-13-6445-2020, 2020.
  • Gierens 2020: Gierens, Klaus; Wilhelm, Lena; Sommer, Michael; Weaver, Dan, 2020: On ice supersaturation over the Arctic.Meteorologische Zeitschrift (2020), https://doi.org/10.1127/metz/2020/1012
  • Hanumanthu 2020: Hanumanthu, S., Vogel, B., Müller, R., Brunamonti, S., Fadnavis, S., Li, D., Ölsner, P., Naja, M., Singh, B. B., Kumar, K. R., Sonbawne, S., Jauhiainen, H., Vömel, H., Luo, B., Jorge, T., Wienhold, F. G., Dirkson, R., and Peter, T.: Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills, Atmos. Chem. Phys., 20, 14273–14302, https://doi.org/10.5194/acp-20-14273-2020, 2020.
  • Héron 2020: Héron, D., Evan, S., Brioude, J., Rosenlof, K., Posny, F., Metzger, J.-M., and Cammas, J.-P.: Impact of convection on the upper-tropospheric composition (water vapor and ozone) over a subtropical site (Réunion island; 21.1° S, 55.5° E) in the Indian Ocean, Atmos. Chem. Phys., 20, 8611–8626, https://doi.org/10.5194/acp-20-8611-2020, 2020.
  • Hicks-Jalali 2020: Hicks-Jalali, S., Sica, R. J., Martucci, G., Maillard Barras, E., Voirin, J., and Haefele, A.: A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland, Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020, 2020.
  • Madonna 2020: Madonna, F., Kivi, R., Dupont, J.-C., Ingleby, B., Fujiwara, M., Romanens, G., Hernandez, M., Calbet, X., Rosoldi, M., Giunta, A., Karppinen, T., Iwabuchi, M., Hoshino, S., von Rohden, C., and Thorne, P. W.: Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective, Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, 2020.
  • Madonna 2020: Madonna, F., Tramutola, E., Sy, S., Serva, F., Proto, M., Rosoldi, M., Gagliardi, S., Amato, F., Marra, F., Fassò, A., Gardiner, T., and Thorne, P. W.: Radiosounding HARMonization (RHARM): a new homogenized dataset of radiosounding temperature, humidity and wind profiles with uncertainty, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-183, in review, 2020.
  • Madonna 2020: Madonna, F.: Can Reference radiosounding measurements be used to improve historical time series? Il Nuovo Cimento C, Italian Physical Society, 2020, 10.1393/ncc/i2020-20121-5.
  • Martínez 2020: Reinares Martínez, I., Evan, S., Wienhold, F. G., Brioude, J., Jensen, E. J., Thornberry, T. D., et al. (2021). Unprecedented observations of a nascent in situ cirrus in the tropical tropopause layer. Geophysical Research Letters, 48, e2020GL090936. https://doi.org/10.1029/2020GL090936
  • Newman 2020: Stuart Newman, Fabien Carminati, Heather Lawrence, Niels Bormann, Kirsti Salonen and William Bell. Assessment of New Satellite Missions within the Framework of Numerical Weather Prediction. Remote Sens. 2020, 12(10), 1580; doi: 10.3390/rs12101580
  • Philipona 2020: Philipona, Rolf & Kräuchi, Andreas & Kivi, Rigel & Peter, Thomas & Wild, Martin & Dirksen, Ruud & Fujiwara, Masatomo & Sekiguchi, Miho & Hurst, Dale F & Becker, Ralf. (2020). Balloon-borne radiation measurements demonstrate radiative forcing by water vapor and clouds. Meteorologische Zeitschrift. 29. 10.1127/metz/2020/1044.
  • Steiner 2020: Steiner, A. K., and Coauthors, 2020: Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. J. Climate, 33, 8165–8194, https://doi.org/10.1175/JCLI-D-19-0998.1.
  • Sterckx  2020: Sindy Sterckx, Ian Brown, Andreas Kääb, Maarten Krol, Rosemary Morrow, Pepijn Veefkind, K. Folkert Boersma, Martine De Mazière, Nigel Fox & Peter Thorne (2020) Towards a European Cal/Val service for earth observation, International Journal of Remote Sensing, 41:12, 4496-4511, DOI: 10.1080/01431161.2020.1718240
  • Sy 2020: SY, S, Madonna, F, Rosoldi, M, et al. Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series. Int J Climatol. 2020; 1– 23. https://doi.org/10.1002/joc.6827

2019

  • Brunamonti 2019:Brunamonti, S., Füzér, L., Jorge, T., Poltera, Y., Oelsner, P., Meier, S., et al. ( 2019). Water vapor in the Asian summer monsoon anticyclone: Comparison of balloon‐borne measurements and ECMWF data. Journal of Geophysical Research: Atmospheres, 124, 70537068. https://doi.org/10.1029/2018JD030000
  • Carminati 2019: Carminati, F., Migliorini, S., Ingleby, B., Bell, W., Lawrence, H., Newman, S., Hocking, J., and Smith, A.: Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation, Atmos. Meas. Tech., 12, 83-106, https://doi.org/10.5194/amt-12-83-2019, 2019.
  • Ferreira 2019: Ferreira, A. P., Nieto, R., and Gimeno, L.: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive, Earth Syst. Sci. Data, 11, 603-627, https://doi.org/10.5194/essd-11-603-2019, 2019.
  • Hicks-Jalali 2019: Hicks-Jalali, S., Sica, R. J., Haefele, A., and Martucci, G.: Calibration of a water vapour Raman lidar using GRUAN-certified radiosondes and a new trajectory method, Atmos. Meas. Tech., 12, 3699-3716, https://doi.org/10.5194/amt-12-3699-2019
  • Jalali 2019:  Jalali, A., Hicks-Jalali, S., Sica1, R.J., Haefele, A., and von Clarmann, T. (2019). A practical information-centered technique to remove a prioriinformation from lidar optimal-estimation-method retrievals. Atmos. Meas. Tech., 12, 3943–3961, 2019. https://doi.org/10.5194/amt-12-3943-2019

  • Kobayashi 2019:Kobayashi, E., Hoshino, S., Iwabuchi, M., Sugidachi, T., Shimizu, K., and Fujiwara, M.: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan, Atmos. Meas. Tech., 12, 3039-3065, https://doi.org/10.5194/amt-12-3039-2019, 2019.
  • Lee 2019: Sang-Wook Lee et al 2019 Metrologia 56 025009; https://doi.org/10.1088/1681-7575/ab0cc0
  • Lee 2019: Lee, S-W, Yang, I, Choi, BIL, et al. Development of upper air simulator for the calibration of solar radiation effects on radiosonde temperature sensors. Meteorol Appl. 2020; 27:e1855. https://doi.org/10.1002/met.1855
  • Matthews 2019: Matthews, J.L.; Shi, L. Intercomparisons of Long-Term Atmospheric Temperature and Humidity Profile Retrievals. Remote Sens. 2019, 11, 853, https://doi.org/10.3390/rs11070853
  • Naakka 2019:  Naakka, T., Nygård, T., Tjernström, M.,Vihma, T., Pirazzini, R., and Brooks, I. M. (2019). The impact of radiosounding observations on numerical weather prediction analyses in the Arctic. Geophysical Research Letters, 46, 8527–8535. https://doi.org/10.1029/2019GL083332

  • Rinke 2019: Rinke, A., Segger, B., Crewell, S., Maturilli, M., Naakka, T., Nygård, T., Vihma, T., Alshawaf, F., Dick, G., Wickert, J., and Keller, J. (2019). Trends of Vertically Integrated Water Vapor over the Arctic during 1979–2016: Consistent Moistening All Over?. Journal of Climate 32, 18, 6097-6116, https://doi.org/10.1175/JCLI-D-19-0092.1

  • Schröder 2019: Schröder, M.; Lockhoff, M.; Shi, L.; August, T.; Bennartz, R.; Brogniez, H.; Calbet, X.; Fell, F.; Forsythe, J.; Gambacorta, A.; Ho, S.-P.; Kursinski, E.R.; Reale, A.; Trent, T.; Yang, Q. The GEWEX Water Vapor Assessment: Overview and Introduction to Results and Recommendations. Remote Sens. 2019, 11, 251, https://doi.org/10.3390/rs11030251
  • Sedlar 2019:  Sedlar, J., and Tjernström, M. (2019). A Process-Based Climatological Evaluation of AIRS Level 3 Tropospheric Thermodynamics over the High-Latitude Arctic. Journal of Applied Meteorology and Climatology, 58, 1867 – 1886. https://doi.org/10.1175/JAMC-D-18-0306.1

  • Sun 2019: Sun, B., T. Reale, S. Schroeder, M. Pettey, and R. Smith, 2019: On the Accuracy of Vaisala RS41 versus RS92 Upper-Air Temperature Observations. J. Atmos. Oceanic Technol., 36, 635–653, https://doi.org/10.1175/JTECH-D-18-0081.1
  • Trent 2019: Trent, T., Schröder, M., Remedios, J. (2019). GEWEX water vapor assessment: Validation of AIRS tropospheric humidity profiles with characterized radiosonde soundings. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD028930
  • Weaver 2019: Weaver, D., Strong, K., Walker, K. A., Sioris, C., Schneider, M., McElroy, C. T., Vömel, H., Sommer, M., Weigel, K., Rozanov, A., Burrows, J. P., Read, W. G., Fishbein, E., and Stiller, G.: Comparison of ground-based and satellite measurements of water vapour vertical profiles over Ellesmere Island, Nunavut, Atmos. Meas. Tech., 12, 4039-4063, https://doi.org/10.5194/amt-12-4039-2019

2018

  • Bobryshev 2018: Bobryshev, O., S. A. Buehler, V. O. John, M. Brath, and H. Brogniez (2018), Is there really a closure gap between 183.31 GHz satellite passive microwave and in-situ radiosonde water vapor measurements?, IEEE T. Geosci. Remote, 56(5), 2904–2910, doi:10.1109/TGRS.2017.2786548.
  • Borger 2018: Borger, C., Schneider, M., Ertl, B., Hase, F., García, O. E., Sommer, M., Höpfner, M., Tjemkes, S. A., and Calbet, X.: Evaluation of MUSICA IASI tropospheric water vapour profiles using theoretical error assessments and comparisons to GRUAN Vaisala RS92 measurements, Atmos. Meas. Tech., 11, 4981–5006, 2018,  doi: 10.5194/amt-11-4981-2018
  • Brunamonti 2018: Brunamonti, S., Jorge, T., Oelsner, P., Hanumanthu, S., Singh, B. B., Kumar, K. R., Sonbawne, S., Meier, S., Singh, D., Wienhold, F. G., Luo, B. P., Boettcher, M., Poltera, Y., Jauhiainen, H., Kayastha, R., Karmacharya, J., Dirksen, R., Naja, M., Rex, M., Fadnavis, S., and Peter, T.: Balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter on the southern slopes of the Himalayas during StratoClim 2016–2017, Atmos. Chem. Phys., 18, 15937-15957, https://doi.org/10.5194/acp-18-15937-2018, 2018.
  • Calbet 2018: Calbet, X., Peinado-Galan, N., DeSouza-Machado, S., Kursinski, E.R., Oria, P., Ward, D., Otarola, A., Rípodas, P. and Kivi, R. (2018) Can turbulence within the field of view cause significant biases in radiative transfer modeling at the 183 GHz band? Atmos. Meas. Tech., 11, 6409–6417, 2018, doi: 10.5194/amt-11-6409-2018
  • Choi 2018: Choi, B. I., Lee, S.-W., Woo, S.-B., Kim, J. C., Kim, Y.-G., and Yang, S. G.: Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber, Adv. Sci. Res., 15, 207–212, https://doi.org/10.5194/asr-15-207-2018, 2018.
  • de Podesta 2018: M. de Podesta, S. Bell, and R. Underwood, Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology, Metrologia, 55(2), 229, doi:10.1088/1681-7575/aaaa52, 2018, http://iopscience.iop.org/article/10.1088/1681-7575/aaaa52/pdf
  • de Podesta 2018: M de Podesta, R Underwood, L Bevilacqua and S Bell, Air temperature measurement challenges in precision metrology, IOP Conf. Series: Journal of Physics: Conf. Series 1065 (2018) 122027 IOP Publishing, doi:10.1088/1742-6596/1065/12/122027
  • Finazzi 2018: Finazzi F., Fassò A., Madonna F., Negri I., Sun B., and Rosoldi M.: Statistical harmonization and uncertainty assessment in the comparison of satellite and radiosonde climate variables, Environmetrics, On line first, 1-17, doi: 10.1002/env.2528
  • Gierens 2018: Gierens, K., Eleftheratos, K., and Sausen, R.: Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations, Atmos. Meas. Tech., 11, 939–948, 2018, doi: 10.5194/amt-11-939-2018
  • Gilpin 2018: Gilpin, S., Rieckh, T., and Anthes, R.: Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons, Atmos. Meas. Tech., 11, 2567–2582, 2018, doi: 10.5194/amt-11-2567-2018
  • Gozlan 2018: Kobi Gozlan, Yuval Reuveni, Kfir Cohen, Boaz Ben-Moshe and Eyal Berliner (June 20th 2018). Cost-Effective Platforms for Near-Space Research and Experiments, Space Flight George Dekoulis, IntechOpen, DOI: 10.5772/intechopen.72168. Available from: https://www.intechopen.com/books/space-flight/cost-effective-platforms-for-near-space-research-and-experiments
  • Kremser 2018: Kremser, S., Tradowsky, J. S., Rust, H. W., and Bodeker, G. E.: Is it feasible to estimate radiosonde biases from interlaced measurements?, Atmos. Meas. Tech., 11, 3021-3029, doi: 10.5194/amt-11-3021-2018, 2018.
  • Nalli 2018: Nalli, Nicholas; Gambacorta, Antonia; Liu, Quanhua; D. Barnet, Christopher; Tan, Changyi; Iturbide-Sanchez, Flavio; Reale, Tony; Sun, Bomin; Wilson, Michael; Borg, Lori; Morris, Vernon. (2017). Validation of Atmospheric Profile Retrievals From the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1: Temperature and Moisture. IEEE Transactions on Geoscience and Remote Sensing. 56. 180-190. doi: 10.1109/TGRS.2017.2744558.
  • Philipona 2018: Philipona, R., Mears, C., Fujiwara, M., Jeannet, P., Thorne, P., Bodeker, G., et al. (2018). Radiosondes show that after decades of cooling, the lower stratosphere is now warming. Journal of Geophysical Research: Atmospheres, 123, 12,509–12,522. https://doi.org/10.1029/2018JD028901
  • Pisoft 2018: Pisoft, P., Sacha, P., Miksovsky, J., Huszar, P., Scherllin-Pirscher, B., and Foelsche, U.: Revisiting internal gravity waves analysis  using GPS RO density profiles: comparison with temperature profiles and application for wave field stability study, Atmos. Meas. Tech., 11, 515–527,  2018, doi: 10.5194/amt-11-515-2018
  • Rieckh 2018: Rieckh, T., Anthes, R., Randel, W., Ho, S-P., and Foelsche, U.: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series, Atmos. Meas. Tech., 11, 3091-3109, 2018, doi: 10.5194/amt-11-3091-2018
  • Tradowsky 2018: Tradowsky, J. S., Bodeker, G. E., Querel, R. R., Builtjes, P. J. H., and Fischer, J.: Combining data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature, Earth Syst. Sci. Data, 10, 2195-2211, doi: 10.5194/essd-10-2195-2018, 2018.
  • Vaquero-Martínez 2018: Vaquero-Martínez, J., Antón, M., Ortiz de Galisteo, J. P., Román, R., Cachorro, V. E., and Mateos, D.: Comparison of integrated water vapor from GNSS and radiosounding at four GRUAN stations, Science of the Total Environment, 648 (2019) 1639–1648, doi: 10.1016/j.scitotenv.2018.08.192.
  • Vérèmes 2018: Two-year operation of the lidar1200: from fine-scale tropospheric structures to lower stratospheric water vapor detection; Hélène Vérèmes, Guillaume Payen, Philippe Keckhut, Valentin Duflot, Jean-Luc Baray, Jean-Pierre Cammas, Jimmy Leclair de Bellevue, Françoise Posny, Stéphanie Evan, Jean-Marc Metzger, Nicolas Marquestaut, Franck Gabarrot, Susanne Meier, Holger Vömel and Ruud Dirksen; EPJ Web Conf., 176 (2018) 05015; https://doi.org/10.1051/epjconf/201817605015

2017

  • Calbet 2017: Calbet, X., Peinado-Galan, N., Rípodas, P., Trent, T., Dirksen, R., and Sommer, M.: Consistency between GRUAN sondes, LBLRTM and IASI, Atmos. Meas. Tech., 10, 2323-2335, doi: 10.5194/amt-10-2323-2017
  • Kawai 2017: Kawai, Y., Katsumata, M., Oshima, K., Hori, M. E., and Inoue, J.: Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics, Atmos. Meas. Tech., 10, 2485-2498, doi: 10.5194/amt-10-2485-2017
  • Kayser 2017: Kayser, M. , Maturilli, M. , Graham, R. M. , Hudson, S. R. , Rinke, A. , Cohen, L. , Kim, J. H. , Park, S. J. , Moon, W. and Granskog, M. A. (2017): Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition , Journal of Geophysical Research-Atmospheres . doi: 10.1002/2016JD026089
  • Lee 2017: Lee, S.-W., Park, E.U., Choi, B.I., Kim, J.C., Woo, S.-B., Park, S., Yang, S.G. and Kim, Y.-G. (2018), Dual temperature sensors with different emissivities in radiosondes for the compensation of solar irradiation effects with varying air pressure. Met. Apps, 25: 49-55. https://doi.org/10.1002/met.1668
  • Pincus 2017: Pincus, R., Beljaars, A., Buehler, S. A., Kirchengast, G., Ladstaedter, F., and Whitaker, J. S.: The Representation of Tropospheric Water Vapor Over Low-Latitude Oceans in (Re-)analysis: Errors, Impacts, and the Ability to Exploit Current and Prospective Observations, Surv Geophys (2017) 38:1399–1423, doi: 10.1007/s10712-017-9437-z
  • Sun 2017: B. Sun, A. Reale, F. H. Tilley, M. E. Pettey, N. R. Nalli and C. D. Barnet, "Assessment of NUCAPS S-NPP CrIS/ATMS Sounding Products Using Reference and Conventional Radiosonde Observations," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 6, pp. 2499-2509, June 2017., doi: 10.1109/JSTARS.2017.2670504
  • Tradowsky 2017: Tradowsky, J. S., Burrows, C. P., Healy, S. B., & Eyre, J. R. (2017). A New Method to Correct Radiosonde Temperature Biases Using Radio Occultation Data, Journal of Applied Meteorology and Climatology, 56(6), 1643-1661.https://doi.org/10.1175/JAMC-D-16-0136.1​​​​​​​
  • von Rohden 2017: von Rohden, C., Naebert, T., Sommer, M., et al. (2017). Temperaturmessung in der Atmosphäre mit Radiosonden. tm - Technisches Messen, 84(12), pp. 804-813, from doi:10.1515/teme-2017-0074
  • Weatherhead 2017: Weatherhead, E.C., G.E. Bodeker, A. Fassò, K. Chang, J.K. Lazo, C.T. Clack, D.F. Hurst, B. Hassler, J.M. English, and S. Yorgun, 2017: Spatial Coverage of Monitoring Networks: A Climate Observing System Simulation Experiment. J. Appl. Meteor. Climatol., 56, 3211–3228, doi: 10.1175/JAMC-D-17-0040.1
  • Weaver 2017: Weaver, D., Strong, K., Schneider, M., Row, P. M., Sioris, C., Walker, K. A., Mariani, Z., Uttal, T., McElroy, C. T., Vömel, H., Spassiani, A., and Drummond, J. R.: Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site, Atmos. Meas. Tech., 10, 2851–2880, 2017, doi: 10.5194/amt-10-2851-2017

2016

  • Bodeker 2016: G. E. Bodeker, S. Bojinski, D. Cimini, R. J. Dirksen, M. Haeffelin, J. W. Hannigan, D. F. Hurst, T. Leblanc, F. Madonna, M. Maturilli, A. C. Mikalsen, R. Philipona, T. Reale, D. J. Seidel, D. G. H. Tan, P. W. Thorne, H. Vömel, and J. Wang: Reference Upper-Air Observations for Climate: From Concept to Reality. Bull. Amer. Meteor. Soc., 97, 123–135; doi: 10.1175/BAMS-D-14-00072.1
  • Brogniez 2016: Brogniez, H., R. Fallourd, C. Mallet, R. Sivira, and C. Dufour, 2016: Estimating Confidence Intervals around Relative Humidity Profiles from Satellite Observations: Application to the SAPHIR Sounder. J. Atmos. Oceanic Technol., 33, 1005–1022, https://doi.org/10.1175/JTECH-D-15-0237.1
  • Ghysels 2016:Ghysels, M., Riviere, E. D., Khaykin, S., Stoeffler, C., Amarouche, N., Pommereau, J.-P., Held, G., and Durry, G.: Intercomparison of in situ water vapor balloon-borne measurements from Pico-SDLA H2O and FLASH-B in the tropical UTLS, Atmos. Meas. Tech., 9, 1207-1219, https://doi.org/10.5194/amt-9-1207-2016, 2016.
  • Hall 2016: Hall, E. G., Jordan, A. F., Hurst, D. F., Oltmans, S. J., Vömel, H., Kühnreich, B., and Ebert, V.: Advancements, measurement uncertainties, and recent comparisons of the NOAA frost point hygrometer, Atmos. Meas. Tech., 9, 4295-4310, doi:10.5194/amt-9-4295-2016
  • Hurst 2016: Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H. B., Rosenlof, K. H., Davis, S. M., Hall, E. G., Jordan, A. F., and Oltmans, S. J.: Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder, Atmos. Meas. Tech., 9, 4447-4457, doi:10.5194/amt-9-4447-2016
  • Jensen 2016: Jensen, M. P., Holdridge, D. J., Survo, P., Lehtinen, R., Baxter, S., Toto, T., and Johnson, K. L.: Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site, Atmos. Meas. Tech., 9, 3115-3129, doi:10.5194/amt-9-3115-2016
  • Kräuchi 2016: Kräuchi, A., Philipona, R., Romanens, G., Hurst, D. F., Hall, E. G., and Jordan, A. F.: Controlled weather balloon ascents and descents for atmospheric research and climate monitoring, Atmos. Meas. Tech., 9, 929-938, doi:10.5194/amt-9-929-2016
  • Kräuchi 2016: Kräuchi, A. and Philipona, R.: Return glider radiosonde for in situ upper-air research measurements, Atmos. Meas. Tech., 9, 2535-2544, https://doi.org/10.5194/amt-9-2535-2016, 2016.
  • Kuik 2016: Kuik, F., Lauer, A., Churkina, G., Denier van der Gon, H. A. C., Fenner, D., Mar, K. A., and Butler, T. M.: Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data, Geosci. Model Dev., 9, 4339–4363, 2016, doi: 10.5194/gmd-9-4339-2016
  • Leblanc 2016: Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Gabarrot, F.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 1: Vertical resolution, Atmos. Meas. Tech., 9, 4029-4049, https://doi.org/10.5194/amt-9-4029-2016
  • Leblanc 2016: Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Godin-Beekmann, S., Haefele, A., Trickl, T., Payen, G., and Liberti, G.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget, Atmos. Meas. Tech., 9, 4051-4078, https://doi.org/10.5194/amt-9-4051-2016
  • Leblanc 2016: Leblanc, T., Sica, R. J., van Gijsel, J. A. E., Haefele, A., Payen, G., and Liberti, G.: Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 3: Temperature uncertainty budget, Atmos. Meas. Tech., 9, 4079-4101, https://doi.org/10.5194/amt-9-4079-2016
  • Lee 2016: Lee, S. , Kim, J. C., Choi, B. I., Woo, S. , So, J. W., Yang, S. G. and Kim, Y. (2016), Development of a double cap on the humidity sensor in radiosondes for improving ventilation. Met. Apps, 23: 35-39. doi:10.1002/met.1517
  • Maturilli 2016: Maturilli, M. & Kayser, M.: Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record, Theor Appl Climatol (2016), doi:10.1007/s00704-016-1864-0
  • Maturilli 2016:Maturilli, M. and Ritter, C.: Surface radiation during the total solar eclipse over Ny-Ålesund, Svalbard, on 20 March 2015, Earth Syst. Sci. Data, 8, 159-164, https://doi.org/10.5194/essd-8-159-2016
  • Nalli 2016: Nalli, N.R., C.D. Barnet, T. Reale, Q. Liu, V.R. Morris, J.R. Spackman, E. Joseph, C. Tan, B. Sun, F. Tilley, L.R. Leung, and D. Wolfe, 2016: Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers. J. Hydrometeor., 17, 2997–3006, https://doi.org/10.1175/JHM-D-16-0163.1
  • Ning 2016: Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., and Smale, D.: The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations, Atmos. Meas. Tech., 9, 79-92, doi:10.5194/amt-9-79-2016
  • Noh 2016: Noh, Y.-C.; Sohn, B.-J.; Kim, Y.; Joo, S.; Bell, W. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations. Atmosphere2016, 7, 94, doi: 10.3390/atmos7070094
  • Tradowsky 2016: Tradowsky, J. and Greg Bodeker; Peter Thorne; Fabien Carminati; William Bell; GRUAN in the service of GSICS: Using reference groundbased profile measurements to provide traceable radiance calibration for spacebased radiometers, GSICS Quarterly Newsletter, 10(2), doi:10.7289/V5GT5K7S
  • Trickl 2016: Trickl, T., Vogelmann, H., Fix, A., Schäfler, A., Wirth, M., Calpini, B., Levrat, G., Romanens, G., Apituley, A., Wilson, K. M., Begbie, R., Reichardt, J., Vömel, H., and Sprenger, M.: How stratospheric are deep stratospheric intrusions? LUAMI 2008, Atmos. Chem. Phys., 16, 8791-8815, https://doi.org/10.5194/acp-16-8791-2016, 2016.
  • Vömel 2016: Vömel, H., Naebert, T., Dirksen, R., and Sommer, M.: An update on the uncertainties of water vapor measurements using cryogenic frost point hygrometers, Atmos. Meas. Tech., 9, 3755-3768, doi:10.5194/amt-9-3755-2016

2015

  • Antón 2015:Antón, M., Loyola, D., Román, R., and Vömel, H.: Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network, Atmos. Meas. Tech., 8, 1135-1145, doi: 10.5194/amt-8-1135-2015
  • Bodeker 2015: Bodeker, G. E. and Kremser, S. (2015): Techniques for analyses of trends in GRUAN data, Atmos. Meas. Tech. Discuss., 7, 11957-11989, doi:10.5194/amt-8-1673-2015
  • Brogniez 2015:Brogniez, H., G. Clain, and R. Roca, 2015: Validation of Upper-Tropospheric Humidity from SAPHIR on board Megha-Tropiques Using Tropical Soundings.J. Appl. Meteor. Climatol.,54, 896–908, https://doi.org/10.1175/JAMC-D-14-0096.1
  • Butterfield 2015: Butterfield, D. and Gardiner, T. (2015): Determining the temporal variability in atmospheric temperature profiles measured using radiosondes and assessment of correction factors for different launch schedules, Atmos. Meas. Tech., 8, 463-470, doi:10.5194/amt-8-463-2015
  • Dionisi 2016:Dionisi, D., Keckhut, P., Courcoux, Y., Hauchecorne, A., Porteneuve, J., Baray, J. L., Leclair de Bellevue, J., Vérèmes, H., Gabarrot, F., Payen, G., Decoupes, R., and Cammas, J. P.: Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo Lidar Calibration Campaign, Atmos. Meas. Tech., 8, 1425-1445, https://doi.org/10.5194/amt-8-1425-2015, 2015.
  • Keckhut 2016: Keckhut, Philippe; Courcoux, Yann; Baray, Jean-Luc; Porteneuve, Jacques; Vérèmes, Hélène; Hauchecorne, Alain; Dionisi, Davide; Posny, Françoise; Cammas, Jean-Pierre; Payen, Guillaume; Gabarrot, Franck; Evan, Stephanie; Khaykin, Sergey; Rüfenacht, Rolf; Tschanz, Brigitte; Kämpfer, Niklaus; Ricaud, Philippe; Abchiche, Abdel; Leclair-de-Bellevue, Jimmy und Duflot, Valentin (2015). Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. Journal of Applied Remote Sensing, 9(1), 094099. Society of Photo-optical Instrumentation Engineers (SPIE) doi: 10.1117/1.JRS.9.094099
  • Kreher 2015: Kreher, K., Bodeker, G. E., and Sigmond, M.: An objective determination of optimal site locations for detecting expected trends in upper-air temperature and total column ozone, Atmos. Chem. Phys., 15, 7653-7665, doi: 10.5194/acp-15-7653-2015
  • Ladstädter 2015:Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G.: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013, Atmos. Meas. Tech., 8, 1819-1834, doi: 10.5194/amt-8-1819-2015
  • Musacchio 2015:Musacchio, C. , Bellagarda, S. , Maturilli, M. , Graeser, J. , Vitale, V. and Merlone, A. (2015), Arctic metrology: calibration of radiosondes ground check sensors in Ny‐Ålesund. Met. Apps, 22: 854-860. doi: 10.1002/met.1506
  • Sairanen 2015:Sairanen, H., et al., Validation of a calibration set-up for radiosondes to fulfil GRUAN requirements, Measurement Science and Technology, 26(10), 105,901, doi: 10.1088/0957-0233/26/10/105901
  • Yu 2015: Hungjui Yu, Paul E. Ciesielski, Junhong Wang, Hung-Chi Kuo, Holger Vömel, and Ruud Dirksen, 2015: Evaluation of humidity correction methods for Vaisala RS92 tropical sounding data, J. Atmos. Oceanic Technol.,doi: 10.1175/JTECH-D-14-00166.1

2014

  • Ciesielski 2014: Paul E. Ciesielski, Hungjui Yu, Richard H. Johnson, Kunio Yoneyama, Masaki Katsumata, Charles N. Long, Junhong Wang, Scot M. Loehrer, Kathryn Young, Steven F. Williams, William Brown, John Braun, and Teresa Van Hove, 2014: Quality-Controlled Upper-Air Sounding Dataset for DYNAMO/CINDY/AMIE: Development and Corrections. J. Atmos. Oceanic Technol., 31, 741–764, doi: 10.1175/JTECH-D-13-00165.1
  • Dirksen 2014: Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H. (2014): Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463-4490, doi:10.5194/amt-7-4463-2014
  • Fassò 2014: Fassò, A, Ignaccolo, R, Madonna, F, Demoz, B. and Franco-Villoria M. (2014) Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles, Atmos. Meas. Tech., 7, 1803–1816, doi:10.5194/amt-7-1803-2014
  • Ignaccolo 2014: Ignaccolo R., Franco-Villora M., Fassò A. (2014) Modelling collocation uncertainty of 3D atmospheric profiles. Stochastic Environmental Research and Risk Assessment. On-line first. doi: 10.1007/s00477-014-0890-7
  • Madonna 2014: Madonna, F., Rosoldi, M., Güldner, J., Haefele, A., Kivi, R., Cadeddu, M. P., Sisterson, D., and Pappalardo, G., Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites, Atmos. Meas. Tech., 2014, 7, 3813-3823, doi:10.5194/amt-7-3813-2014
  • Sairanen 2014: Hannu Sairanen, Martti Heinonen, Richard Högström, Antti Lakka & Heikki Kajastie (2014) A Calibration System for Reference Radiosondes that Meets GRUAN Uncertainty Requirements, NCSLI Measure, 9:3, 56-60, DOI: 10.1080/19315775.2014.11721696

2013

  • Baray 2013:Baray, J.-L., Courcoux, Y., Keckhut, P., Portafaix, T., Tulet, P., Cammas, J.-P., Hauchecorne, A., Godin Beekmann, S., De Mazière, M., Hermans, C., Desmet, F., Sellegri, K., Colomb, A., Ramonet, M., Sciare, J., Vuillemin, C., Hoareau, C., Dionisi, D., Duflot, V., Vérèmes, H., Porteneuve, J., Gabarrot, F., Gaudo, T., Metzger, J.-M., Payen, G., Leclair de Bellevue, J., Barthe, C., Posny, F., Ricaud, P., Abchiche, A., and Delmas, R.: Maïdo observatory: a new high-altitude station facility at Reunion Island (21° S, 55° E) for long-term atmospheric remote sensing and in situ measurements, Atmos. Meas. Tech., 6, 2865-2877, doi: 10.5194/amt-6-2865-2013
  • Brocard 2013:Brocard, E., Philipona, R., Haefele, A., Romanens, G., Mueller, A., Ruffieux, D., Simeonov, V., and Calpini, B.: Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements, Atmos. Meas. Tech., 6, 1347-1358, doi: 10.5194/amt-6-1347-2013
  • Brocard 2013: Brocard, E., P. Jeannet, M. Begert, G. Levrat, R. Philipona, G. Romanens, and S. C. Scherrer (2013): Upper air temperature trends above Switzerland 1959–2011, J. Geophys. Res. Atmos., 118, 4303–4317, doi:10.1002/jgrd.50438
  • Gardiner 2013: T. Gardiner, F. Madonna, J. Wang, D. N. Whiteman, J. Dykema, A. Fassò, P. W. Thorne, and G. Bodeker (2013): Sampling and measurement issues in establishing a climate reference upper air network. AIP Conf. Proc. 1552, pp. 1066-1071; doi:10.1063/1.4821422
  • Nalli 2013: Nalli, N. R., et al. (2013), Validation of satellite sounder environmental data records: Application to the Cross‐track Infrared Microwave Sounder Suite, J. Geophys. Res. Atmos., 118, 13,628–13,643, doi: 10.1002/2013JD020436 .
  • Philipona 2013: Philipona, R., A. Kräuchi, G. Romanens, G. Levrat, R. Ruppert, E. Brocard, P. Jeannet, D. Ruffieux, and B. Calpini (2013), Solar and thermal radiation errors on upper-air radiosonde temperature measurements, J. of Atmos. and Oceanic Tech., 30, 2382-2393, doi:10.1175/JTECH-D-13-00047.
  • Thorne 2013: P. W. Thorne, H. Vömel, G. Bodeker, M. Sommer, A. Apituley, F. Berger, S. Bojinski, G. Braathen, B. Calpini, B. Demoz, H. J. Diamond, J. Dykema,A. Fassò, M. Fujiwara, T. Gardiner, et al. (2013): GCOS reference upper air network (GRUAN): Steps towards assuring future climate records. AIP Conf. Proc. 1552, pp. 1042-1047; doi:10.1063/1.4821421
  • Wang 2013: Wang, Junhong, Liangying Zhang, Aiguo Dai, Franz Immler, Michael Sommer, Holger Vömel, 2013: Radiation Dry Bias Correction of Vaisala RS92 Humidity Data and Its Impacts on Historical Radiosonde Data. J. Atmos. Oceanic Technol., 30, 197–214., doi:10.1175/JTECH-D-12-00113.1

2012

  • Kobayashi 2012: Kobayashi, E., Y. Noto, S. Wakino, H. Yoshii, T. Ohyoshi, S. Saito, and Y. Baba, 2012: Comparison of Meisei RS2-91 rawinsondes and Vaisala RS92-SGP radiosondes at Tateno for the data continuity for climatic data analysis. J. Meteor. Soc. Japan, 90, 923-945, doi: 10.2151/jmsj.2012-605
  • Philipona 2012: Philipona, R., A. Kräuchi, and E. Brocard, Solar and thermal radiation profiles and radiative forcing measured through the atmosphere, Geophys. Res. Lett., 2012, 39, L13806, doi:10.1029/2012GL052087
  • Reichardt 2012: Jens Reichardt, Ulla Wandinger, Volker Klein, Ina Mattis, Bernhard Hilber, and Robert Begbie, "RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements," Appl. Opt. 51, 8111-8131 (2012); doi: 10.1364/AO.51.008111
  • Whiteman 2012:Whiteman, D. N., Cadirola, M., Venable, D., Calhoun, M., Miloshevich, L., Vermeesch, K., Twigg, L., Dirisu, A., Hurst, D., Hall, E., Jordan, A., and Vömel, H.: Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere, Atmos. Meas. Tech., 5, 2893-2916, https://doi.org/10.5194/amt-5-2893-2012, 2012.

2011

  • Madonna 2011:Madonna, F., Amodeo, A., Boselli, A., Cornacchia, C., Cuomo, V., D'Amico, G., Giunta, A., Mona, L., and Pappalardo, G.: CIAO: the CNR-IMAA advanced observatory for atmospheric research, Atmos. Meas. Tech., 4, 1191-1208, https://doi.org/10.5194/amt-4-1191-2011
  • Seidel 2011: Seidel, D. J., B. Sun, M. Pettey, and A. Reale (2011), Global radiosonde balloon drift statistics, J. Geophys. Res., 116, D07102, doi:10.1029/2010JD014891
  • Whiteman 2011: Whiteman, D. N., K. C. Vermeesch, L. D. Oman, and E. C. Weatherhead (2011), The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor, J.Geophys. Res., 116, D21118, doi:10.1029/2011JD016610

2010

  • Immler 2010: Immler, F. J.; Dykema, J.; Gardiner, T.; Whiteman, D. N.; Thorne, P. W. and Vömel, H., Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products. Atmospheric Measurement Techniques, 2010, 3, 1217–1231, doi:10.5194/amt-3-1217-2010
  • Shimizu 2010: Shimizu, K. and Hasebe, F.: Fast-response high-resolution temperature sonde aimed at contamination-free profile observations, Atmos. Meas. Tech. Discuss., 3, 3293-3317, doi:10.5194/amt-3-1673-2010

2009

  • Boers 2009: Boers, R., and E. van Meijgaard (2009), What are the demands on an observational program to detect trends in upper tropospheric water vapor anticipated in the 21st century?, Geophys. Res. Lett., 36, L19806, doi:10.1029/2009GL040044
  • Seidel 2009: Seidel, D. J.; Berger, F. H.; Diamond, H. J.; Dykema, J.; Goodrich, D.; Immler, F.; Murray, W.; Peterson, T.; Sisterson, D.; Sommer, M.; Thorne, P.; Vömel, H. & Wang, J., Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans. Bulletin of the American Meteorological Society, 2009, 90, 361–369, doi:10.1175/2008BAMS2540.1