
Spatial Coverage of Monitoring Networks: A Climate Observing System
Simulation Experiment

ELIZABETH C. WEATHERHEAD,a GREG E. BODEKER,b ALESSANDRO FASSÒ,c KAI-LAN CHANG,d

JEFFREY K. LAZO,e C. T. M. CLACK,f DALE F. HURST,d,g BIRGIT HASSLER,b JASON M. ENGLISH,a,h

AND SONER YORGUN
i

aUniversity of Colorado Boulder, Boulder, Colorado
bBodeker Scientific, Alexandra, New Zealand

cUniversity of Bergamo, Bergamo, Italy
dCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

eNational Center for Atmospheric Research,j Boulder, Colorado
fVibrant Clean Energy, Boulder, Colorado

gNOAA/ESRL/Global Monitoring Division, Boulder, Colorado
hNOAA/ESRL/Global Systems Division, Boulder, Colorado

iMonash University, Clayton, Victoria, Australia

(Manuscript received 21 February 2017, in final form 12 June 2017)

ABSTRACT

Observing systems consisting of a finite number of in situ monitoring stations can provide high-quality

measurements with the ability to quality assure both the instruments and the data but offer limited in-

formation over larger geographic areas. This paper quantifies the spatial coverage represented by a finite set

of monitoring stations by using global data—data that are possibly of lower resolution and quality. For il-

lustration purposes, merged satellite temperature data fromMicrowave Sounding Units are used to estimate

the representativeness of the Global Climate Observing System Reference Upper-Air Network (GRUAN).

While many metrics exist for evaluating the representativeness of a site, the ability to have highly accurate

monthly averaged data is essential for both trend detection and climatology evaluation. The calculated

correlations of the monthly averaged upper-troposphere satellite-derived temperatures over the GRUAN

stations with all other pixels around the globe show that the current 9 certified GRUAN stations have

moderate correlations (r$ 0.7) for approximately 10% of the earth, but an expanded network incorporating

another 15 stations would result in moderate correlations for just over 60% of the earth. This analysis in-

dicates that the value of additional stations can be quantified by using historical, satellite, or model data and

can be used to reveal critical gaps in current monitoring capabilities. Evaluating the value of potential ad-

ditional stations and prioritizing their initiation can optimize networks. The expansion of networks can be

evaluated in a manner that allows for optimal benefit on the basis of optimization theory and economic

analyses.

1. Introduction

This paper offers one method for assessing the value of

a monitoring network composed of a small set of stations.

We use the Global Climate Observing System (GCOS)

Reference Upper-Air Network (GRUAN) as an example

by evaluating the ability of individual stations to represent

long-termvariability inmonthly averageddata for anyother

site globally. Merged satellite records from the Microwave

Sounding Unit (MSU) datasets and statistical techniques
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that build from previous published efforts are used to

evaluate the optimization of a valuable and robust Earth

observing system. We acknowledge that monitoring net-

works often serve multiple purposes and that support of

those efforts will require additional evaluations to fully

optimize any network. In particular, observations that

continue long-term, historical records are invaluable to cli-

mate studies as are all observations that support research

into the dynamic interactions of climate parameters and

climate impacts.

Efforts to optimize environmental monitoring net-

works have often focused on examining regional effects;

McBratney et al. (1981) used statistical techniques

to optimize sampling approaches for regional networks;

Yost et al. (1982) identified ‘‘areas of influence’’ for

monitoring networks to understand soil characteristics;

Webster et al. (1989) identified cohesiveness of regions for

reflected solar radiation values. Early efforts often focused

on means at a particular sampling site to assure that all

subregions would be appropriately monitored (e.g.,

Genton 1998). Indeed, some of the earliest advances in

spatial statistical techniques, including variograms, were

developed within the mathematical community with

strong involvement and encouragement from the envi-

ronmental community (Papritz and Flühler 1994;

Weatherhead and Webb 1997; Wikle and Royle 1999;

Kint et al. 2003; Dobbie et al. 2008). The motivation for

understanding how much information could be derived

from a finite monitoring network drove much of the

development for now-standard techniques in spatial

analysis.

From the earliest efforts, the environmental moni-

toring community recognized the need to optimize

available resources and made use of available tools from

optimization theory (e.g., Dantzig and Cottle 1963;

Cressie 1985). These original efforts made extensive use

of optimization algorithms with collected data and ex-

trapolated relationships observed in datasets to identify

needed additional monitoring stations. Todini and

Ferraresi (1996) compared variogram techniques with

kriging and variance estimates to better understand

uncertainties based on incomplete sampling. Careful

efforts in this area included looking at the dependence

of results on the statistical behavior of the collected data,

including van Groenigen (2000), who compared vario-

gram techniques with different methods for optimizing

networks. The computational complexity of testing for

all possible optimization choices was recognized early

(Nychka and Saltzman 1998; Royle 2002) and remains a

challenge (Cressie and Wikle 2015).

Examining networks as an entity to be optimized,

Nychka and Saltzman (1998) helped clarify the goals

of optimizing networks when they addressed these

questions: What does it mean to measure the environ-

ment well?Howmanymonitoring instruments are really

necessary? They focused on the ability to estimate en-

vironmental parameters away from a monitoring station

with a known level of certainty. In this paper, we expand

on that goal, with a particular aim of capturing monthly

variability, which is critical to tracking global patterns of

climate variability such as El Niño–Southern Oscillation

(ENSO) and the North Atlantic Oscillation (NAO) as

well as developing climatologies and detecting trends

(Weatherhead et al. 1997; Messié and Chavez 2011). Girz

et al. (2002) looked at the possibility of developing a fully

adaptive observing system based on some of these

principles.

Efforts for many environmental monitoring networks

have turned to trend detection—both planning new

networks and optimizing existing ones for the detection

of trends (Weatherhead et al. 2005; MacDonald 2005).

Royle and Nychka (1998) offered coverage designs to

optimize distance-based metrics. Van Groenigen (2000)

suggested the use of variogram patterns for optimizing

sampling schemes. Royle (2002) expanded on earlier

work to incorporate modifications to address some of

the computationally challenging questions, showing that

near-optimal results can be obtained if evaluation and

optimization are intelligently planned. Weatherhead

et al. (2002) outlined some of the general issues for

detecting environmental change—including trends.

Bodeker and Kremser (2015) identified methods for

trend detection early in the planning of GRUAN and

allowed network decisions to be guided by trend de-

tection capabilities. Kreher et al. (2015) proposed an

objective approach for network planning by identifying

optimal locations for trend detection.

In addition to observing trends, some of the work

looked for insights from network optimizing techniques.

De Viron et al. (2013) looked at 25 climate indices for

appropriate correlation on interannual time scales.

Fischer et al. (2011) looked at the impact of time scales

on trend estimates. Hunt et al. (2013) expanded on point

correlation maps and worked with self-organizing maps

to identify teleconnection patterns. For many of these

studies, the complementary nature of understanding the

global modes of variability and analyzing how networks

should be planned led to mutually complementary goals

of understanding the Earth system and improving net-

work configurations.

While the introduction of satellite monitoring allows

for global coverage, there remains a strong need for

ground-based monitoring for both continuity and cali-

bration. A clear strength of in situ or ground-based en-

vironmental observing systems is the ability to make

measurements using regularly calibrated instruments at
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selected locations (e.g., Whiteman et al. 2011). This

advantage comes at the cost of having a finite number of

locations with observations. The spatial representative-

ness of individual stations or a network of stations is

addressed in this paper. One way to address spatial

representativeness is to ask the question of howmuch of

the surface of the earth is within a stated distance of a

monitoring site. This approach is appropriate for some

applications but ignores the often complex spatial co-

herence that exists in the Earth system. Another ap-

proach is to identify locations that represent different

modes of variability. However, this approach might ig-

nore important regions that are not well characterized

by currently identified modes of variability. For this

study, we have examined a number of metrics for eval-

uating individual sites and focused, as an example, on

the ability of a monitoring site to reproduce monthly

variability in upper-air temperature at nearby locations,

using correlations as a primary way to describe the

spatial representativeness. This technique proves to be

appropriate because the correlation results display a

smooth behavior; if an inhomogeneous situation were

the case, the techniques would not be appropriate. We

then expanded this approach to evaluate the network

as a whole and discussed the need for redundancy and

optimization techniques that can be applied.

2. Monthly means

Climate observations serve a multitude of purposes,

including monitoring for long-term changes and ex-

treme events, supporting climate services, and providing

data for process studies to better understand the envi-

ronment. The World Meteorological Organization

(WMO) IntegratedGlobal Observing System (WIGOS)

is successfully encouraging network planning to include

the service of networks to the full range of important

scientific and societal goals. With this multiplicity of

purposes, the requirements for any monitoring system

can be carefully analyzed, and scientists may conclude

that the requirements are ‘‘high spatial (e.g. every

10–100km) resolution’’ and ‘‘high temporal resolution

(e.g. every hour)’’ (e.g., Wulfmeyer et al. 2015). Such

requirements can, in some circumstances, be logistically

and economically prohibitive. In this paper, we address

the role of finite networks in their ability to monitor

variability and detect trends.

To monitor variability, we require observations that

allow us to record the mean and variance of seasonal

cycles and to produce some representation of diurnal

cycles. To detect trends in mean values, we require

monitoring efforts to be able to produce monthly aver-

aged records that can be used to detect expected trends

with a stated level of efficiency.Monthly averaged values,

and their associated uncertainties, are needed to both

establish climatologies and detect trends. Little attention

has been given in the literature to the appropriate way to

derive monthly means, although thoughtful attention has

been given to the subject within operational and research

efforts. Temporal averaging is sensitive to temporal gra-

dients of the parameter of interest that might exist

throughout the chosen temporal averaging unit (e.g., one

month). These variations will be smoothed with highly

resolvedmeasurements but notwithmeasurements taken

only sporadically or sparsely resolved. This challenge is

similar to addressing sparse spatial sampling. This paper

addresses both some of the temporal issues in creating

monthly means as well as spatial issues.

Calculating unbiased monthly means

Many factors must be carefully considered when cal-

culating monthly means at a given site; uncertainty

of individual observations, local factors affecting in-

strumentation, and diurnal influences are among some

of the factors. In this section, we address two issues that

are sometimes ignored but may be relevant for data

taken at less than daily resolution: the local seasonal

cycle for the parameter being measured and the day-to-

day autocorrelation of the data. Depending on the pa-

rameter, some of these issues may be minor and some

may be highly influential on the resultant monthly av-

erage value. While for observations occurring every day

at the same time, the impact of these factors is simplified,

effects of these issues should still be critically evaluated.

1) FACTOR 1: SEASONAL CYCLE BIAS

A seasonal cycle can produce a bias in calculated

monthly means if the measurements are not evenly dis-

tributed through themonth or if efforts are not taken into

account for such temporal sampling biases. This effect is

strongest if the observations are not taken daily and even

stronger if the observations are not taken frequently.

Consider the time series in Fig. 1, whichmay represent

temperature data from a springtime month, with the

dark squares indicating when observations are taken.

Even though most of the observations were above the

seasonally normal level for that time of year, the simple

mean of the data taken would result in a lower-than-

normal monthly average because most of the data were

collected in the early part of the month when seasonal

temperatures are lower.

Even a regular sampling cycle, for instance, mea-

surements everyMonday, can create an unexpected bias

in the monthly mean due to strong seasonal changes

within a month. Measurements taken every Monday for

2013 would result in observations on 1, 8, 15, . . . April
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while the Monday measurements for 2014 would be

taken on 7, 14, . . . April. The impact of this sampling

program on monthly averages can be particularly im-

portant in polar regions where solar zenith angle and

temperature can change notably over the period of a few

days. Care with the monthly averaging of data collected

at different times of the month can reduce variability,

and at times influence trends, when the period of ob-

servation is short.

2) FACTOR 2: AUTOCORRELATION INFLUENCE

Irregularly sampled data are sometimes unavoidable

given the availability of the instrumentation, schedules

of personnel, and requirements for measurements (clear

sky, etc.). The irregular sampling of data can result in

clusters of observations, which may ‘‘oversample’’ one

regime, for instance, clear-sky days, within the month.

As an extreme example, consider observing the tem-

perature nine times in a single day and then once two

weeks later in the same month; computing a simple av-

erage of all ten numbers would not result in a robust

estimate of the monthly mean temperature. The chal-

lenge for creating a best estimate when sporadic daily

observations are taken implies that sequential days of

data are, to some extent, redundant because of day-to-

day autocorrelation.

In this study, we make the often-appropriate as-

sumption that environmental data are autocorrelated

and that the functional form of that autocorrelation is a

first-order autoregressive [AR(1)] process both when

daily data are considered and monthly data are consid-

ered. This AR(1) process does not imply that for daily

data, an event, such as a warm set of days, has a time

length of one day but rather that a single exponent can

help explain the time scale of the event.

We introduce a weighted mean method that in-

corporates information on the day-to-day autocorrela-

tion in the data. The motivation for this weighted mean

approach is to assure that observations taken close to-

gether in time are weighted less than observations that

are less clustered.

Consider the daily observations used in Fig. 1, pre-

sented in Fig. 2 as temperature anomalies, or desea-

sonalized daily data. The month roughly consists of

three fairly brief warm periods and three cool periods.

In the first part of the month, observations were taken

frequently; during the last part of the month, only

one observation was taken. The first part of the month

coincided with a period of slightly higher-than-normal

temperatures, while the middle and last part of the

FIG. 2. Daily deseasonalized data for a single month (observa-

tions are the black squares). Oversampling in the early part of the

month where the data are close to seasonal norms give the im-

pression of a quiet, ‘‘normal’’ month even though there were three

periods of fairly high values. The one sample taken during an un-

usually warm period would be outweighed by the multiple se-

quential observations at the beginning of the month unless a more

intelligent way of averaging the autocorrelated data is used.

FIG. 1. Daily observations are taken frequently at the begin-

ning of the month (black squares) when the seasonally expected

values are relatively low and are taken less frequently during the

end of the month. The long-term seasonal cycle is the dark solid

line, and the two thin gray lines represent 1 standard deviation

from historically expected levels. Without correcting for the

changes due to the seasonal cycle, the calculated monthly mean

would be much lower than seasonal norms even though the

temperature on days when observations were made were at or

above the seasonal expected level. Correcting daily data for

seasonality is required to avoid this potential source of error.

The green hatched area is the 1-month period being used to

create a monthly average.
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month exhibited many notably higher-than-normal tem-

peratures. If all observations are weighted equally, thus

ignoring the redundancy in the day-to-day observations,

the mean would be considerably lower than if the ob-

servations were weighted by their information content.

To address the issue of daily autocorrelation and po-

tential oversampling of one period of the month, the

monthly means are estimated by a weighted average of

daily data, with weights based on the frequency of data

collection. Consider the n deseasonalized daily obser-

vationsY1, . . . ,Yn sampled at days t1, . . . , tn for a generic

month. Assuming that daily data behave approximately

as a first-order autoregressive process with daily auto-

correlation denoted by u, weights for each of the daily

values can be computed as follows:

Weight
1
5

1

11ut22t1
, (1)

Weight
i
5

1

11uti2ti21
2

uti112ti

11uti112ti
, for i52, . . . ,n21,

(2)

Weight
n
5

1

11utn2tn21
. (3)

Hence, the weighted monthly mean for month m is de-

fined by

y
m
5 �

n

i51

w
i
3Y

i
, (4)

where wi are the normalized weights, summing to unity

and given by

w
i
5

Weight
i

�
n

i51

Weight
i

. (5)

For cases where the observations occur daily at the

same time each day and there are no missing values, in

Eqs. (1)–(3), ti 2 ti215 constant and the corresponding

normalized weights reduce to equal weights for ob-

servations i 5 2, . . . , n 2 1. As may be intuitive, the

weights also reduce to equal values as autocorrelation

approaches zero.

The effect of the weighted mean is to give greater

value to observations that are temporally far from other

observations. The impact on a collection of means may

be small but removes some of the variability due to

oversampling an unusual episode within themonth. This

effect can become even more important when, as in the

case of trends, an unusually large or small value can

have a large influence on the statistical results and their

scientific interpretation.

We note that the autocorrelation observed in the data

reflect only the information of the data collected. Biases

in collecting of data, for instance, only launching sondes

on clear-sky days, cannot be properly accounted for

without independent data for corroboration of results.

3. Spatial averages

Assessment of regional climatologies and/or regional

trends is often based on spatial averages. For example,

in understanding the behavior of the Arctic atmosphere,

some averaging of data collected from different stations

located at high northern latitudes would be a natural

choice. Usually, these stations are chosen to be repre-

sentative of the geographic area but are not regularly

spaced nor have they been optimized, in any strict sense,

to cover spatial variability and spatial correlation. We

can see that, similar to the impacts of uneven temporal

sampling discussed in section 2, uneven spatial sampling

can result in overemphasis of certain areas if geographic

averages are not calculated with care.

Hence, if the interest is in estimating the spatial av-

erage of temperature, say u, at, for example, 500 hPa,

on a domain D given by the spherical cap over the

Arctic, we commonly use n observations y5 (y1, . . . , yn)

made at locations (x1, . . . , xn) in domain D. Under

suitable assumptions, there is an optimal estimator of

u given by a linear function û5Aywhere the matrixA is

the kriging matrix K(x) integrated over the domain D

(see, e.g., Cressie and Wikle 2015). Note that matrix A

depends on a spatial covariance function among obser-

vations c(x, x0) 5 cov[y(x), y(x0)] for any two points x

and x0 in domain D.

When the (x1, . . . , xn) are not fixed in advance, we are

interested in network design. In this case, all design

points (x1, . . . , xn21, xn) or only the last design point xn
may be decided by minimizing the variance of û.

In this context, network representativeness may be

assessed by considering the uncertainty of the optimal

estimate of y at an unobserved location x, namely,

ŷ(x) 5 K(x)y, which is given by the root-mean-square

error (RMSE), namely, RMSE[y(x) 2 ŷ(x)]. It follows

that a network gap may be defined for the region R

where the uncertainty exceeds a certain threshold h:

R5 fx: RMSE[y(x)2 ŷ(x)]. h)g . (6)

An alternative to this approach is considered in section 9,

which does not require detailed knowledge of the co-

variance function.

The approach discussed above is suitable for data at a

fixed altitude. If the interest is on the spatial average of

temperature, say u, in a spherical shell, for example,
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between 1000 and 500 hPa over the Arctic cap, a natural

choice is to use data in the form of atmospheric profiles.

In this case, the appropriate statistical modeling tech-

nique may be based on a functional data approach (see,

e.g., Fassò et al. 2014; Ignaccolo et al. 2015). Now, u is

given by the integral over a volume, but its optimal es-

timator û may be expressed again as linear function

û 5 Ay where now matrix A depends on the functional

spatial covariance and is given by the integrated func-

tional kriging estimator. Network design may similarly

extend to functional data (e.g., Royle and Nychka 1998).

4. Representativeness of individual stations

The question of spatial representativeness is critical to

planning any network. Even for well-behaved spatially

smooth parameters such as wind, pressure, and humid-

ity, the question of spatial representativeness in a cli-

mate observing network is difficult to address and

depends strongly on the climate question being asked.

For instance, monitoring for extreme events, such as

strength of hurricanes or tornadoes, may require a

completely different spatial sampling than monitoring

for average air temperature. In this work, we focus on

representativeness of individual stations for estimating

monthly variability, such as the monthly variability of

temperature and humidity, as well as possible changes in

the monthly mean values. In this study, we look at how

well an individual station might be able to represent

changes taking place at other nearby locations. Com-

mon sense indicates that high-quality monitoring sta-

tions do not need to be placed very close to each other

unless redundancy is desired in the network. The ques-

tion addressed here is this: How close is redundant? This

can best be addressed with long-term observations at

many nearby sites, which is often not possible. Alter-

natively, this question can be addressed with satellite

data, as we do here, or high-quality model output.

MSU temperature data are created from merged

satellite observations going back to 1978. The data

have been intensely studied, and corrections have been

applied that account for a number of factors, including

satellite drift, instrument degradation, new in-

struments coming on line, and diurnal sampling

(Lanzante et al. 2003; Mears et al. 2003; Christy et al.

1998). The temperature values represent estimates of

temperature in a broad vertical region based on the

instruments’ capabilities. In this paper, we look at

two of the more robust MSU datasets: the upper-

tropospheric and lower-stratospheric deseasonalized

monthly averaged temperature data; we find similar

results for spatial representativeness for both, with the

differences discussed below. Comparison between

standard radiosondes and MSU tropospheric data

consistently shows strong agreement for monthly av-

eraged data with both the tropospheric (Christy et al.

2000) and stratospheric (Spencer and Christy 1993)

datasets, with correlations between MSU and sondes

often above 0.94 for monthly averaged data.

Although many metrics can be used, after consider-

ation, we chose the Pearson correlation coefficient r

to serve as an appropriate metric to describe represen-

tative observations for understanding global represen-

tativeness. The Pearson correlation coefficient r is the

most commonly used correlation metric, is used in a

wide range of fields, is easy to calculate, and is readily

understood by many. For our spatial correlations, we

consider temperature time series of N deseasonalized

monthly averages y1(x), . . . , yN(x) at locations or pixels

x, which are identified by their coordinates, x 5 (Lat,

Lon). In particular, we consider observations at a spe-

cific location x* and calculate how they correlate with

observations at all other locations x by means of corre-

lation coefficient r(x*, x). Since monthly means are de-

seasonalized, they are zero mean time series, and the

correlation coefficient r(x*, x) is given by

r(x*, x)5
�
N

m51

y
m
(x*)y

m
(x)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

m51

y
m
(x*)2 �

N

m51

y
m
(x)2

s . (7)

We point out that the Pearson correlation coefficient

has a number of properties that are helpful for inter-

preting the results presented later in the paper: 1) re-

sults are highly dependent on what time unit is used for

averaging—for this work, we use monthly averaged

deseasonalized values; 2) negative values can be in-

terpreted as teleconnections with opposite signs for

variations; 3) values ignore time-lagged relationships

and only focus on concurrent values; 4) a high corre-

lation can exist even if the two locations have very

different magnitudes of variability; and 5) a high cor-

relation can exist even if the two locations have very

different mean values. These last two properties are

very important because establishing a network based

on correlations will allow estimates of relative vari-

ability in places not being monitored but will not allow

estimates of means or absolute variability.

For this study, we examine GRUAN as a network of

stations for which we would like to understand the

spatial representativeness of the individual stations and

we use availableMSUmonthly averaged deseasonalized

observations as our reference dataset. The monthly av-

eraged upper-tropospheric data span January 1981–

February 2016, and the lower-stratospheric data span
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November 1978–February 2016. If deseasonalized

values were not used, most locations outside of the

tropics would correlate strongly with each other—either

positively for locations in the same hemisphere or neg-

atively for locations in opposite hemispheres. If satellite

data were not available, global model output may

have been used, as is often the case for some climate

observing system simulation experiments when no data

exist (e.g., Andersen et al. 2006; Feldman et al. 2015).

To begin our exploration of spatial coherence using

temperature data, we consider 10yr ofmonthly averaged,

deseasonalized, MSU data from three European loca-

tions: Cabauw, Netherlands; Paris, France; and Payerne,

Switzerland, in Fig. 3. We see that the variability in the

monthly averaged data shows great similarity for the

locations Paris andCabauw, with a correlation coefficient

of 0.97 and a correlation of Paris and Payerne of 0.95;

however, the correlation drops for Cabauw and Payerne

to 0.91 because of the larger distance between these two

locations.

Representation of common variability

Expanding this example of the spatial cohesiveness of

these three locations, we look for the general relation-

ship of an individual station’s monthly averaged time

series of upper-troposphere temperature at Cabauw

with locations around the globe in a manner similar to

Sofen et al. (2016). For the discussions in this paper, we

refer to correlations of r . 0.7 as ‘‘well correlated’’ and

r . 0.9 and above as ‘‘strongly correlated.’’

Figure 4 shows results for the correlation of the de-

seasonalized monthly averages of upper-troposphere

MSU time series over Cabauw with the time series

for the rest of the world. The results show high corre-

lation between Cabauw and much of northern Europe.

The areas around the globe where upper-tropospheric

temperature data are strongly correlated with Cabauw

(r . 0.9) cover 1.7 3 106 km2, and areas that are well

correlated with Cabauw (r . 0.7) cover 6.8 3 106 km2.

For the lower stratosphere, we see roughly similar spa-

tial coherence, with the area of the earth well correlated

with Cabauw as 5.7 3 106 km2 and the area strongly

correlated with Cabauw as 1.6 3 106 km2.

The spatial extent of representativeness, as suggested

by the correlation coefficients derived from MSU data,

FIG. 3. Time series of monthly averaged, deseasonalized temperature data from MSU upper-tropospheric data for locations over

Cabauw (red), Paris (purple), and Payerne (light blue). The data show such strong similarities in the time series for the 10 yr presented that

the individual stations are hardly distinguishable.

FIG. 4. Correlation of deseasonalized, monthly averaged MSU

satellite temperature data for all pixels around the globe with the

pixel over Cabauw.
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can vary strongly by location. Figure 4 could erroneously

be interpreted as implying that we need observing sys-

tems spaced roughly 1500km apart to assure that all

areas of the earth are well correlated (r . 0.7) with at

least one monitoring station. Because of the many

physical and chemical processes that drive variability as

well as spatial correlations, some regions of the globe are

correlated over a larger spatial extent than others. Re-

sults for spatial representativeness for all nine of the

currently certified GRUAN stations are presented in

Table 1.

Each of the certified GRUAN stations show areas of

representativeness in the upper troposphere with areas

well correlatedwith at least oneGRUAN station as being

between 6.13 106 and 14.33 106km2. For areas that are

strongly correlated with at least oneGRUAN station, the

areas are reduced by roughly 75%. Relative to the upper

troposphere, representativeness in the lower stratosphere

is usually smaller by roughly 30% for both r . 0.7 and

r . 0.9 criteria. The similarities between locations are

due, in large part, tomost of the currentGRUANstations

being in or near the midlatitudes. Lauder, New Zealand;

TABLE 1. Value of confirmed GRUAN stations. Area represented by correlation of MSU temperature in the upper troposphere and

lower stratosphere for each of the nine certifiedGRUAN stations. Results are shown for correlation of 0.7 and 0.9 when using themonthly

deseasonalized temperature data. Each station is considered separately, without consideration for the other stations in the network.

GRUAN location

Upper troposphere Lower stratosphere

Area represented by a

correlation $ 0.7

Area represented by a

correlation $ 0.9

Area represented by a

correlation $ 0.7

Area represented by a

correlation $ 0.9

Ny Ålesund (78.928N) 14.3 3 106 4.2 3 106 8.6 3 106 2.9 3 106

Sodankylä (67.418N) 9.3 3 106 2.7 3 106 8.4 3 106 2.4 3 106

Cabauw (51.978N) 6.8 3 106 1.7 3 106 5.8 3 106 1.6 3 106

Lindenberg, Germany (47.608N) 7.2 3 106 2.0 3 106 5.5 3 106 1.5 3 106

Payerne (46.828N) 6.9 3 106 1.8 3 106 5.0 3 106 1.3 3 106

Potenza, Italy (40.648N) 7.0 3 106 1.7 3 106 5.0 3 106 1.1 3 106

Boulder, Colorado (40.008N) 8.6 3 106 2.0 3 106 4.6 3 106 1.1 3 106

Beltsville, Maryland (39.038N) 6.1 3 106 1.1 3 106 4.1 3 106 1.2 3 106

Lauder (45.058S) 10.3 3 106 2.3 3 106 9.1 3 106 2.1 3 106

FIG. 5. Correlations of monthly averaged data across the tropics can be understood from this plot, which shows the range of temperature

anomalies from MSU upper-tropospheric monthly averaged deseasonalized data across the full longitudinal range at the equator. The

common variability results in high correlations among all locations in the tropics; this differs from other regions, such as the midlatitudes,

where strong positive correlations do not exist across such long distances.
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Ny Ålesund, Norway; and Sodankylä, Finland, have

much larger correlation areas, potentially because

Lauder is surrounded by the Southern Ocean and

Ny Ålesund and Sodankylä are located in the Arctic,

where orographic features are minimal and isolated air

masses allow for larger spatial coherence.

Figure 5 shows how similar temperature data from

different sites in the tropics behave when evaluated

on a monthly basis. The figure shows the full range

(maximum and minimum) of monthly averaged anom-

alies for all MSUupper-troposphere data at the equator.

The large redundancy in information does not imply that

only one location would be needed to monitor the

tropics. Suchminimal monitoring would limit data users’

ability to address a large number of important scientific

questions, including questions concerning the evolution

and maximum strength of El Niño events, the potential

expansion of the tropics, or the influence of regional

activity such as volcanic eruptions, large spread fires,

monsoons, or local ocean temperature changes.

It should be noted that the agreement between MSU-

gridded data and GRUAN individual-site data are

challenged by spatial averaging issues (Schutgens et al.

2016) as well as temporal sampling issues, including

those issues discussed in sections 2 and 3 as well as

fundamental measurement issues, some of which are

discussed in Ladstädter et al. (2015), Sairanen et al.

(2015), and Wulfmeyer et al. (2015). The advanced

techniques for creating monthly averages presented in

section 2 will help increase the agreement betweenMSU

temperature observations and in situ GRUAN obser-

vations, although a detailed comparison is beyond the

scope and intent of this paper. We also note that the

results here can help guide the use of high-quality sta-

tion data, such as GRUAN, in helping merge datasets

from different platforms: the level of agreement be-

tween stations can be estimated with correlation studies

and help identify agreement with other datasets.

(Weatherhead et al. 2017)

5. Representativeness of a network of stations

Under the leadership of the WMO and other agencies,

many individually maintained stations are coordinated in

their operations and held to similar standards that allow

consideration of the network as a whole for monitoring

purposes, as opposed to simply individual efforts. GRUAN

is an example where, under the auspices of UNEP, the

Intergovernmental Oceanographic Commission, Interna-

tional Council for Science, and WMO, a network has

been established to make reference-quality observations of

the upper air to provide long-term, high-quality climate

records, constrain and calibrate data from more spatially

comprehensive global observing systems (including satel-

lites and current radiosonde networks), and fully charac-

terize the properties of the atmospheric column. As of

January 2017, there are nine certified GRUAN stations

adhering to the requirements of reference-quality mea-

surements. Reference measurements are traceable to an SI

unit or an accepted standard, provide a comprehensive

uncertainty analysis, can be traced back to an archive of raw

data, include complete metadata descriptions, have pro-

cessing techniques that are documented in accessible liter-

ature, and are validated, for example, by intercomparison

with redundant observations. In addition to the 9 currently

certified stations, there are a further 13 stations preparing

for, or awaiting, certification.

We carry out the same calculations using MSU data

as shown in Fig. 4 but now at the locations of all

nine GRUAN stations. This gives the nine correlations

r(x1*, x), . . . , r(x9*, x) for each pixel x around the globe,

and the maximum correlation map is given by the highest

correlation with respect to the nine GRUAN stations:

r(x)max 5max[r(x
g
*, x) for g5 1, . . . , 9]. (8)

These calculations inform us of how well the

network—as opposed to a single station—can correlate

with any location around the world. Thus, stations that

are very close to each other are observing similar air

masses, and their coverages, in the context of this net-

work analysis, are not counted twice. We present these

results in Fig. 6 and can readily see that most developed

regions are represented by at least one GRUAN site

with a correlation of at least 0.2, but with the oceans well

underrepresented.

The network calculations can give us some new in-

sights into the network’s representativeness. For this

upper-air example, roughly 3% of the earth’s surface is

strongly correlated (r . 0.9) for upper-tropospheric

temperature with at least one of the certified GRUAN

stations and approximately 10% of the earth is well

correlated (r. 0.7) for at least oneGRUAN station. For

the lower-stratospheric temperatures, we see similar

results, with the percentage of the earth well correlated

with a GRUAN station at 8% and the percentage of the

earth strongly correlated with a GRUAN station at 3%.

In general, we see similar results for the troposphere and

stratosphere, with the results for individual stations

summarized in Table 1.

Figure 6 reveals a number of features about the cur-

rent configuration of GRUAN. First, the tropics are

poorly represented by the current network. Africa,

South America, Australia, and Asia are not well repre-

sented by the existing set of certified GRUAN stations.

Although Sodankylä and Ny Ålesund provide coverage
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of the Arctic, given the Arctic Oscillation and potential

future changes in the Arctic, sites in the Alaskan Arctic

may be warranted.

Correlating monthly averages results in some of the

major climate indices being represented, such asElNiño–
Southern Oscillation, the Pacific decadal oscillation, and

the Arctic Oscillation, because these features can domi-

nate some of the upper-troposphere temperature varia-

tions. However, the ability to monitor these features, and

their potential changes, would require additional climate

observing system simulation experiments to optimize

monitoring to be able to assess any future changes in in-

tensity or areal coverage of these phenomena.

6. Expansion and contraction of networks

Some of the strengths and challenges of networks

composed of a small set of isolated stations are the pos-

sibilities for expansion or contraction of the network.

Studies, such as this one, that make use of available sat-

ellite or model output can allow for insights into the value

of proposed changes to a network. In this section, we look

at the potential impact of additions to the current set of

nine certified GRUAN stations. Figure 7 shows the same

results presented in Fig. 6 but now uses all locations for-

mally in GRUAN, including the 9 certified stations, 13

stations awaiting certification, and 2 stations no longer in

operation. Table 2 shows the impact to the network

coverage of adding each of the 13 stations awaiting cer-

tification to the network of 9 certified stations.

Most notably, MSU upper-tropospheric temperature

data at Darwin, Northern Territory, Australia, a pro-

posedGRUANstation, arewell correlated (R5 0.7) with

1773 106 km2 in the troposphere and slightly less area in

the lower stratosphere. When strongly correlated criteria

are considered (R . 0.9), these areas become 23 3 106

km2 and 53 3 106km2 in the troposphere and strato-

sphere, respectively. Darwin correlates strongly with

most sites in the tropics in part because ocean-driven

phenomena such as ENSO have a widespread impact on

the tropical atmosphere, as illustrated in Fig. 5.

If the entire set of proposed GRUAN stations is

adopted, the full network will result in roughly 26% of

the area of the earth strongly correlating, in the upper

troposphere, with at least one of the GRUAN stations.

The geographic representation of this network (Fig. 7)

shows the necessity for stations beyond the 13 current

awaiting certification, particularly stations in South

America, Antarctica, northern Africa, Canada, central

Asia, and the Pacific Ocean.

In recent years, Nauru and Manus have exited from

GRUAN. The impact to the global coverage by losing

those two stations has been large. An 11-station

GRUAN (current 9 certified stations plus Nauru and

Manus) offered coverage of the upper troposphere for

234 3 106 km2 when correlations of 0.7 were consid-

ered, while the current 9 GRUAN stations only offer

coverage of 52 3 106 km2, with similar degradation

observed for the coverage of the stratosphere. Much of

that lost area is due to the poor coverage of the tropics

with the current network and the strong coherence of

temperature data in the tropics, allowing for Manus

FIG. 7.Maximum correlation of upper-tropospheric temperature

is shown for the complete 24 GRUAN stations (including 9 certi-

fied, 13 yet to be certified, and 2 now-inactive sites). Results are for

the maximum correlation at each pixel with any one GRUAN

station. Dark blue dots indicate existing certified stations; green

squares indicate sites preparing for, or awaiting, certification; and

the light blue triangles indicate GRUAN stations no longer sub-

mitting data (Manus and Nauru).

FIG. 6. Maximum correlation for each location around the globe

with the single highest correlated GRUAN station when the cur-

rent nine certified GRUAN stations are considered.
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and Nauru to offer significant information for the large

tropical region.

7. Optimization of additional stations

With a finite number of proposed stations—in the case

of GRUAN, 13 stations currently await certification and

formal inclusion in the network—it is relatively easy to

quantify the impact of each additional site, as shown in

section 6. If a metric of success is agreed to, such as the

sum of areas of interest covered by moderate or high

correlation for a specific parameter with at least one

network station, proposed stations can be ordered by

impact on that metric. The proposed stations can be

considered both in isolation or, potentially more rele-

vant, as incremental additions to the existing network. In

performing this ordering, two complications emerge for

placing a priority on one proposed site over another:

1) there will always be more than one metric by which to

evaluate a site, and 2) often, the optimal network will

not be achieved by addressing each proposed site in-

dividually and sequentially.

Most monitoring networks serve multiple purposes.

Even networks focused on climate, such as GRUAN, will

serve multiple functions (such as monitoring temperature,

humidity, and winds) and will serve different communities

(such as the climate trends detection, numerical weather

prediction, atmospheric process studies, and satellite

calibration–validation communities). These multiple func-

tions will have different metrics for evaluation, and each

can beweighted for their relative usefulness in obtaining an

optimal configuration of stations based on a balanced ap-

proach with limited resources. However, this will require a

subjective decision on how to determine the importance of

each function within the monitoring network. WIGOS

continues to lead critical conversations both to identify the

highest priorities for observations and to help decision-

makers balance the many factors of importance to

participating parties. While prioritization is challeng-

ing, monitoring climatological levels of key parameters is

critical to addressing the broad range of science goals.

Examining the value of individually proposed sta-

tions, and always adding the station of highest value, can

result in a poorly designed network. For instance, if only

one monitoring site is to be added to the Pacific Ocean,

evaluation of proposed stations might result in an ad-

dition near the middle of the Pacific. Then, if at some

later date, another Pacific Ocean site is desired for in-

clusion, the new site may be forced to be placed in a

suboptimal location because of the choice for the first

site being in themiddle of the PacificOcean.However, if

it is known that the possibility exists for a second site at

some later date when the first one is being decided, a

better choice may emerge. Essentially, if an efficient

network is to be constructed, with uncertainty being a

part of that planning process, multiple choice avenues

and risk functions need to be examined within the con-

text of an optimization approach.

For a relatively low number of site choices, calculations

can be performed easily. For example, with the existing

GRUANof 9 certified stations, if it was decided that only

2 of the additional 13 stations were to be confirmed, only

78 calculations (1/2 3 13 3 12) would need to be made.

Just by deciding to include a third site in the same set

would result in 858 calculations. If we now assume amuch

larger set of possible stations, say 100 possible new loca-

tions, and we want to select 10 stations, there are more

than 17 3 1012 combinations to consider. This number

may be too high for direct calculation (Schrijver 1998).

Expansion of this larger network is much better com-

puted using optimization theory (see, e.g., Dantzig and

Cottle 1963; Schrijver 1998; Boyd and Vandenberghe

2004; Clack et al. 2015), which identifies strategies likely

to result in the optimal results but does not directly test

each possible configuration.

When optimization theory is considered, defining the

metric of success is of paramount importance, pointing

again to the important conversations carried out about

prioritization of environmental observations. The

choices will constrain the number of combinations that

are necessary to be solved for an optimized network.

Additional information can be provided, such as the

limited distance between stations, locational-dependent

variables that must be considered, redundancy values,

time series for each possible site, and uncertainty fields.

Economic constraints will be considered in section 10.

The more information that is provided to the optimi-

zation, the more robust the output will be. Indeed, the

impact of each constraint can be evaluated in such an

approach.

8. Network robustness

Current and future networks are never guaranteed to

continue; unexpected disruptions occur in one or more

single stations for a ground-based network. While section

7 discussed planned expansion and contraction of a net-

work to allow network coverage, this section addresses the

need for redundancy in planned monitoring networks,

particularly when those networks are extremely important

to scientific and societal goals. Redundancy in monitoring

can be valuable both to cover the possibility of a station

becoming inactive, as well as to allow quality assurance of

unusual observations. Using similar ‘‘areas of correlation’’

analyses as presented in section 5, we can ask how robust

areas of correlation are to removal of a single station.
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We can, with the small number of stations in GRUAN,

identify the impact of removal of any one station. We can

identify the largest impact to each pixel around Earth re-

sulting from the removal of any one station using

r(x)max2 5max
2
[r(x

g
*, x) for g5 1, . . . , 9], (9)

where max2 refers to the second-highest values in this

series of nine values. In this sense, we identify the level

of redundancy of information, or ‘‘insurance,’’ for each

location around the world. Figure 8 shows the results of

these calculations for the full 24-station GRUAN. Note

that if the full 24-station monitoring network existed,

Davis, Antarctica, as well as much of the far southern

latitudes, would not be redundantly covered, meaning

that unusual observations could not be confirmed and

representativeness of the network would be strongly

affected if a southern-latitude site dropped from the

network. Similar calculations carried out for just the

current nine certified GRUAN stations indicate that

only parts of Europe and North America would be well

represented with the loss of any one of the nine stations.

Ideally, a robust network would be highly resilient to the

loss of a single station and the percentage of the earth’s

surface well correlated with a nearby station would

change very little with the loss of any one station.

We consider the percentage of the earth that would still

be well correlated with a GRUAN station after the loss

of a single station as the ‘‘insured’’ coverage, a gauge of

network robustness against station dropouts. The per-

centage of the earth that would be well correlated with

the full 24-stationGRUAN is 61%; however, only 44%of

the earthwould be robustly covered—that is, only 35%of

Earth would still be well covered if one of the nearby

stations dropped out of the network. Coverage in the

lower stratosphere for the full 24-site network would be

52%, but only 35% of the earth is immune from fallout

of a single station. Because the value of redundancy in the

network is both to assure against dropouts of stations but

also to assure that unusual events can be confirmed by

more than one site, wemay, for some networks, choose to

look at a higher-level insurance. That is, we may ask how

robustly Earth would be represented with moderate

correlation if two stations dropped out of a network; such

results are not presented in this paper. This examination

of insurance may be even more important for network

planning after large coverage is already obtained.

As the working group on GRUAN and individual

countries consider decisions on additional stations, among

other factors to consider is the value of those stations to the

global coverage by GRUAN. Table 2 summarizes results

for the 13 stations being considered for certification as

GRUAN stations. For each of these stations, we calculate

1) the area represented by that station, based on available

MSU data, 2) the additional area that the site would bring

to the GRUAN, and 3) the insurance by offering re-

dundancy to regions of the earth that are currently only

well represented by a single GRUAN station. Table 2

summarizes these results for both the upper troposphere

and lower stratosphere.

Note that some locations in the tropics, such as Darwin

and Singapore, represent large areas both individually and

as additions to the current network, because much of the

variability in monthly averaged levels is from ENSO and

shows a signal throughout the tropics where the current

GRUAN is lacking coverage. For some stations, such as

Réunion, France, the addition of that station offers little

information as insurance against the dropout of any single

station, but they are still critical monitoring stations for the

area that they do represent; in the case of Réunion, the
addition of that station would add 93.7 3 106km2 of cov-

erage toGRUAN that would not otherwise be represented.

9. Alternative metrics for evaluating a network

Given the multiple communities any one monitoring

network may serve, including weather, climate, hydrol-

ogy, research, and aviation, there can be a large number

of metrics for evaluating the adequacy of a network. For

climate purposes, another valid approach to evaluating

sites for an existing or proposed monitoring network is

to determine whether different locations can be expected

to reproduce similar global means (Chang et al. 2015)

or to observe similar trends and whether those trends

will be efficiently detected (Weatherhead et al. 2002).

FIG. 8. Level of redundancy of representativeness for each lo-

cation around the world based on the proposed 24-site GRUAN.

The correlation listed is the highest correlation that would exist if

the single most important station for that location were removed.

Symbols are as in Fig. 7.
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Monitoring and understanding major structures of the

climate system, including Hadley circulation, ENSO

events, Pacific decadal oscillation (PDO), and cyclone

development will be key to improving our ability to

project future climate changes (de Viron et al. 2013;

Messié and Chavez 2011). Designing a network that will

adequately monitor these aspects of the climate system

will be challenging and is beyond the scope of this paper.

However, a basic understanding of these phenomena

pushes further for more stations in the tropics, Southern

Hemisphere, Arctic, and over the oceans.

Even for identifying the spatial coverage needed,

there are a number of approaches beyond the ap-

proaches presented in sections 4–6. In this study, we

examined the possibility of using lagged correlations:

for two time series yt and y0t, an approach finds the time

lag d that maximizes the cross-correlation coefficient

r(yt,y
0
t), which is equivalent to the approaches pre-

sented in section 4 for the case when d 5 0. We found

substantially similar results for the lagged correlations

as for the non-lagged correlations.

Further correlation approaches, such as the Shannon

information index (Silva and Quiroz 2003; Madonna

et al. 2014) or directional information transfer index

(Alfonso et al. 2010), can measure the more general

nonlinear information. It is computationally intensive

for a large dataset and thus unsuitable for the applica-

tion of global network assessment.

In this paper, we quantify the representativeness of a

station in GRUAN (including certified, yet to be certi-

fied, and inactive stations). In the case where the loca-

tions of potential new stations are undetermined, we can

adopt the space-filling approach, based on maximum or

minimax criterion (Royle 2002; Tan 2013), to improve

the network coverage. For instance, we can use such

techniques to determine the next most valuable location

across South America, Antarctic, northern Africa, the

Arctic (particularly Greenland), and the Pacific Ocean

to be added in GRUAN.

We carried out a number of variations of the tech-

niques presented in sections 4–6 and found agreement

with many alternative techniques, including co-

variance, time-lagged correlations, and seasonal cor-

relations. For those techniques tested, we found little

change from our fundamental conclusions. We con-

sider one strength of our current approach to be the

ease of calculating and interpreting different options

for network configurations.

The techniques presented are useful when there is

coherence to the variations in the parameter being

considered, even if that coherence has a relatively

short spatial scale. For instance, a network of soil

moisture monitors in a complex terrain situation may

have correlations of a few kilometers or less; potential

contaminants may have a spatial correlation of me-

ters. Even in these complex situations, it is unlikely

that a single spatial length will be adequate to describe

the coherence in the region and the need for individ-

ual monitoring. The combined use of scientific insight

and available data will likely give the best guidance

for network design.

These techniques do not work well if the spatial scale

is fractal in nature and spatial distance is not a good

indicator of common variability. This can happen in

near-surface phenomena depending on the spatial scale

of interest. For instance, mountains are often identified

as fractal (Prusinkiewicz and Hammel 1993) and may

require special techniques (e.g., Strachan et al. 2016;

Mountain Research Initiative Elevation-Dependent

Warming Working Group 2015; Daly et al. 2010).

Yorgun and Rood (2015) investigated the spatial con-

tinuity of orographic precipitation using climate model

simulations and synthetic data using variogram analysis.

The results of this study indicated significant differ-

ences in the behavior of the variograms of orographic

precipitation when compared with that of the variables

with spatially coherent nature such as temperature. A

more focused study, including case studies with varying

network station locations (e.g., investigation of the

spatial correlation when a station is located in the

windward vs leeward side of a mountain to quantify

the differences in wet vs dry regimes) will be valuable

in order to design an efficient observing network rep-

resenting mountainous regions. Depending on the

network purpose, complex terrain may also require

special considerations (Abatzoglou 2013; Pepin and

Lundquist 2008). This technique does require available

information for estimating coherence scales, and short-

term campaigns may be needed to help establish those

spatial scales.

10. Economic analyses of network decisions

Decisions to improve, add, or change locations of

stations should be driven by considerations of the soci-

etal benefits and costs of network design. Benefit–cost

analysis (BCA) approaches should be implemented for

any program with significant costs or potentially signif-

icant societal benefits or impacts such as global observ-

ing systems (WMO 2015). In BCA, the present value of

costs (i.e., the discounted value of the flow of costs) is

subtracted from the present value of benefits to indicate

whether a program is economically viable (i.e., benefits

exceed costs). BCA analysis of different network op-

tions can also be compared to identify options that

maximize socioeconomic benefits.
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Costs are generally borne by the network sponsors and

may be readily apparent in part as they tend to be near

term and ‘‘upstream.’’ On the cost side, according to the

2010 U.S. GRUAN implementation plan (NOAA/

National Climatic Data Center 2010), total costs, in-

cluding equipment, sondes, labor, data management, and

overall system coordination, over 5 yr for 7 sites were

projected to be $8.325 3 106 (Tables 1 and 2), averaging

to about $240,000 per site per year for 1 weekly and

1 monthly additional launch of high-quality radiosondes.

While this cost estimate included weekly sonde de-

ployment, GRUAN sites may cost up to $1 million per

year with more frequent launches. Additional costs may

be incurred for further data processing, storage, com-

munication, and use in specific models or applications,

but these are likely minor relative to capital costs.

On the benefit side, data-quality improvements should

be evaluated in terms of potential changes in societal

outcomes from the use of improved information

[e.g., using a ‘‘value of information’’ (VOI) ap-

proach; Laxminarayan and Macauley 2012]. For VOI

analysis, it is necessary to determine how improvements

in observing systems translate into improved in-

formation for decision-makers and potentially generate

socioeconomic benefits. As benefits tend to accrue

‘‘downstream’’ to a spatially, temporally, and societally

diverse decision-makers, benefits may be more difficult

to identify and quantify (Morss et al. 2005).

Currently, there is fairly limited literature on the value of

Earth observations and climate modeling for policy on

which to build such economic analysis (e.g., Williamson

et al. 2002; Macauley 2006a,b; Weaver et al. 2013; Cooke

et al. 2014; Donaldson and Storeygard 2016). A recent

review of the literature on the economic value of climate

services founda fairly limited number of studies, withmost

of those focusing on benefits in agriculture andmostly for

developed countries (Clements et al. 2013).Morework in

this area would be important to support policy analysis

for optimization of observing systems, and, in comparison

with the costs of implementing observing systems, the

economic analysis itself is relatively inexpensive.

11. Conclusions

Observing networks are critical to improving our un-

derstanding of the Earth system. In the case of climate,

multiple scientific questions can be addressed with any

one observing system. In many cases, a global observing

system will benefit from being representative of as much

of the globe as possible. In this paper, we propose a

technique for evaluating the representativeness of a

network to address one of the basic requirements for

monitoring the climate: establishing monthly means

across the globe. This technique allows the cohesiveness

of the system to dictate the spatial distance between

stations as opposed to an ‘‘even sampling’’ method or

similar approach. The technique is most useful when

there is some cohesiveness within the system to be ob-

served, but the characteristics of cohesion vary by lo-

cation, as with the upper-tropospheric temperature

data. The same technique, however, can be applied to

smaller-scale problems, including observations within a

parcel of a few acres as long as some information is

available to allow derivation of the spatial coherence.

Using the GRUAN site locations as an example, we

calculate correlation coefficients on MSU monthly aver-

aged data to understand the global representativeness of

the network. We note that the current set of 9 certified

GRUAN stations offers representativeness (correlation

at the 0.7 level) for the upper-troposphere and lower-

stratosphere temperatures for 10% of the earth, while

expansion of the network to include the 13 stations

awaiting certification and reinstating Manus and Nauru

would offer representativeness (correlation at the 0.7

level) in the upper troposphere for roughly 61% of the

globe. The analysis points out how underrepresented

certain areas of Earth will be even with the more ex-

panded GCOS network: South America, Antarctica,

northernAfrica, the PacificOcean, and parts of theArctic

all require additional monitoring to allow GRUAN to

more completelymonitor the globe.Without this analysis,

the lack of observations in South America may have

pointed to an obvious need for the network; with this

analysis, it becomes clear that a station in the lower half of

South America is highly important to allow global rep-

resentativeness and that a station in the northern half of

South America would add significantly less value.

Multiple decisions may be made in an effort to

improve a network. Understanding the complexity of

science questions and estimating societal benefits of high-

quality monitoring is daunting, but significant improve-

ments may be gained through objective evaluation as well

as economic analyses with considerations of costs, benefits,

and alternative choices under the constraints of fixed

budgets. As informative as the analyses presented in this

paper may be for showing spatial representativeness, it is

equally informative for cautioning against oversimplifying

network decisions. Key climate questions, such as changes

in circulation, impacts of oceans, andwater cycle questions,

would require different climate observing system simula-

tion experiments than those presented here. We offer this

initial evaluation as a starting point for discussions on

planning the climate observing systems of the future.
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