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Tim Trent1,2, Marc Schröder3, and John Remedios1,2
4

1Earth Observation Science, Department of Physics and Astronomy, University of Leicester, University5

Road, Leicester, LE1 7RH, UK.6
2National Centre for Earth Observation, Department of Physics and Astronomy, University of Leicester,7

University Road, Leicester, LE1 7RH, UK.8
3Satellite-Based Climate Monitoring, Deutscher Wetterdienst/Frankfurter Strasse 135, 63067 Offenbach,9

Germany10

Key Points:11

• Altitudes below 250 hPa corrected operational radiosondes show similar uncer-12

tainty performance to GRUAN.13

• AIRS tropospheric water vapor biases relative to GRUAN are within 6±0.3% ppmv14

below 300 hPa.15

• Estimated collocation uncertainty in the northern hemisphere shown to reduce to16

below 1% ppmv for calculated yearly biases17

Corresponding author: T. Trent, tjt11@le.ac.uk

–1–©2018 American Geophysical Union. All rights reserved.

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1029/2018JD028930

http://dx.doi.org/10.1029/2018JD028930


manuscript submitted to JGR: Atmospheres

Abstract18

The tropospheric water vapor profile record from the Atmospheric Infrared Sounder (AIRS)19

now spans over a decade, making it a valuable resource for climate studies. To be con-20

sidered as a Climate Data Record (CDR) it is key that the ultimate performance of these21

observations are understood. The GEWEX water vapor assessment (G-VAP) has been22

tasked with characterising the current state of the art in water vapor products currently23

available for climate analysis. Within the scope of this exercise, water vapor profiles from24

AIRS have been assessed using collocated characterised in situ measurements of tropo-25

spheric water vapor between 2007 and 2012. We first show how previously published meth-26

ods for correcting radiosondes can be applied to global records, which show high corre-27

lations to GCOS Reference Upper-Air Network (GRUAN) performance at pressures be-28

tween the surface and 250 hPa. We go further and show the first comparison of uncer-29

tainties from both the newly created Characterised Radiosonde Measurement (CRM)30

and GRUAN data sets. Global estimates of AIRS water vapor profile (wet/dry) biases31

relative to GRUAN and CRM are within 6±0.3 % ppmv and 15±0.1 % ppmv below 30032

hPa respectively. The CRM record allows latitudinal analysis for the first time, which33

when examined shows sensitivity to changes in absolute concentration due to large scale34

circulation in the International Tropical Convergence Zone (ITCZ). This paper advances35

the use of state-of-the-art in situ records for characterising absolute performance, recog-36

nising that long term stability needs further research.37

1 Introduction38

Water vapor is an important greenhouse gas within the atmosphere which influ-39

ences (directly and indirectly) the radiative balance of the Earth as well as surface and40

soil moisture fluxes. It is sufficiently abundant and short-lived that it is essentially un-41

der natural control (Sherwood, Roca, Weckwerth, & Andronova, 2010). With a predom-42

inant capacity for positive feedback (≈ 2 W m−2 K−1, Dessler, Zhang, and Yang (2008)),43

water vapor acts as the largest amplification mechanism for anthropogenic climate change44

compared to radiative forcing from greenhouse gases (Chung, Soden, Sohn, & Shi, 2014).45

This makes water vapor a critical variable for climate studies (Held & Soden, 2000; Tren-46

berth, Fasullo, & Smith, 2005). The role of tropospheric water vapor in atmospheric pro-47

cesses extends over a wide range of spatial and temporal scales, from the global climate48

to micrometeorology (Bevis et al., 1992).49

In order to use satellite observations to capture these varying scales, assessment50

of their performance against characterised in situ measurements (with well-defined un-51

certainties) is of high importance. The new generation of infrared (IR) sounders that have52

replaced the long standing High-resolution Infrared Radiation Sounder (HIRS) series of53

instruments and are able to resolve vertical structure of water vapor in the troposphere.54

In this lowest region of the Earth’s atmosphere the absolute concentrations of water va-55

por vary by over four orders of magnitude. Biases and uncertainties in profile measure-56

ments near the surface can therefore exceed the actual concentrations in the upper tro-57

posphere. Observations of water vapor profiles in the lower stratosphere and troposphere58

are considered an Essential Climate Variable (ECV) by the Global Climate Observing59

System (GCOS). For a satellite-based water vapor ECV, GCOS prescribes target require-60

ments of 5% measurement uncertainty and a stability of 0.3% per decade. Therefore, val-61

idation of any satellite humidity profile requires in situ measurements that are indepen-62

dent of the satellite retrieval, a detailed uncertainty budget, evidenced traceability to SI63

and follow agreed community best practices to assess their application for climate stud-64

ies. These fiducial reference measurements are key to assess the application of AIRS wa-65

ter vapor for climate studies.66

The GEWEX Data and Assessments Panel (GDAP) has initiated the GEWEX wa-67

ter vapor assessment (G-VAP), which has the major purpose to characterise the current68
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state-of-the-art in satellite water vapor products. The overall goal is to conduct consis-69

tent evaluations and inter-comparisons in order to point out strengths, differences and70

limitations of long-term satellite data records, in particular with respect to stability. Be-71

sides the large amount of available satellite data records such data records are updated72

frequently and it will be a future element of G-VAP to reassess the change in quality be-73

tween the different versions. Through this effort the selection process of suitable water74

vapor data products by the general (climate analysis) community and in particular by75

GDAP is supported. Further details are available at www.gewex-vap.org and Schröder76

et al. (2017).77

Launched aboard the Aqua platform on the 4th of May 2002, the Atmospheric In-78

frared Sounder (AIRS), with its companion instrument the Advanced Microwave Sound-79

ing Unit (AMSU-A) (Aumann et al., 2003) is the first of a new generation of advanced80

IR nadir sounders providing hyper-spectral radiances for numerical weather prediction81

(NWP) (Le Marshall et al., 2006), and research purposes. The overall objectives of AIRS82

are to observe the global water and energy cycles, climate variation and trends, and the83

response of the climate system to increased greenhouse gases (Chahine et al., 2006).84

AIRS provides humidity profiles with a good vertical resolution through the tro-85

posphere with a mean resolution of 2.7 ± 1 km between 600-1000 hPa, 2.8 ± 0.7 km be-86

tween 600-300 hPa and 3.14 ± 1.4 km between 300-100 hPa (Maddy & Barnet, 2008).87

The increased sensitivity of AIRS to the vertical distribution of water vapor is an im-88

portant step in observing capability because concentrations of atmospheric water vapor89

are mainly controlled by temperature rather than anthropogenic emission (Myhre et al.,90

2013). With retrievals of atmospheric temperature from AIRS showing an agreement to91

in situ observations within ≈0.5 K (Feltz et al., 2017), understanding the absolute per-92

formance of AIRS humidity retrievals is key for improving our understanding of radia-93

tive forcing and feedback effects from water vapor.94

Since 2011 (Immler & Sommer, 2011), the GCOS Reference Upper-Air Network95

(GRUAN) has provided highly characterised ‘climate quality’ observations of temper-96

ature and humidity in order to meet the criteria required for reference measurements (Dirk-97

sen et al., 2014; Immler et al., 2010). The network is not intended to be globally com-98

plete but will sample major climate regions. GRUAN currently contains sixteen sites (at99

the time of this study) with the intention to grow to several dozen in number. All sites100

are attached to an institution that has relevant expertise to manage them and adhere101

to the GCOS climate monitoring principles (Seidel et al., 2009). Like their operational102

counterparts, GRUAN radiosondes are launched primarily at the routine times of 00:00103

hrs and 12:00 hrs UTC, with some sites performing additional launches at six to twelve104

hourly spacing. This has the drawback that when collocating upper-atmosphere sound-105

ings with satellite overpasses (such as Aqua) with GRUAN, larger spatial/temporal cri-106

teria have to be employed compared to operational stations in order to produce mean-107

ingful statistics. However, while operational radiosondes produce more collocations, these108

lower-quality soundings contain uncorrected/accounted sources of bias and uncertainty.109

In this study we attempt to bridge this gap by applying documented corrections110

to operational soundings at sites that have been identified as using Vaisala RS92 radioson-111

des. The methodology used here also allows for the calculation of the associated uncer-112

tainty with the bias correction estimate. These new bias-corrected in situ profiles are113

referred to as ‘characterised’ rather fiducial as there are a number of assumptions that114

have to be applied to the operational archive. Therefore, these characterised observa-115

tions can be thought of as complimentary to GRUAN rather than a direct substitution.116

Assessment of these corrections are performed though comparisons of common sound-117

ings i.e. the same profiles reported separately through GRUAN and Characterised Ra-118

diosonde Measurements (CRM) archives. Finally, the primary objective of producing CRM119

is to assess AIRS water vapor profile retrievals within the context of G-VAP.120
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This paper is structured as follows; section 2 introduces the AIRS humidity data121

set and the radiosonde archives from GRUAN and the UK Met Office (UKMO). In sec-122

tion 3 we describe the generation of CRM using an adapted and extended correction al-123

gorithm that has been applied to the low resolution radiosondes presented in section 2.124

Section 4 outlines the collocation and comparison methodology to assess AIRS humid-125

ity biases. Global analysis of AIRS comparisons to GRUAN and CRM are presented in126

section 5.127

2 Data Description128

This section provides an overview of all the data used in this study.129

2.1 AIRS L2 Humidity Profiles130

The AIRS Water vapor profile retrievals used in this study come from the version131

6 level 2 (L2) support product (E. Olsen et al., 2013; E. T. Olsen et al., 2007). The sup-132

port product represents the real skill level of the AIRS retrieval (Wong et al., 2015), have133

4 times denser vertical resolution (Gettelman et al., 2004) and include the first guess pro-134

files and averaging kernels needed for profile validation (Rodgers & Connor, 2003). The135

AIRS retrieval process uses a combination of infrared (IR) and microwave (MW) radi-136

ances to provide estimates of all-sky (up to 80% cloud fraction) temperature, water va-137

por, trace gases, skin temperature, cloud and outgoing long wave (OLR) radiation prop-138

erties within the 45 km AMSU (nadir) instantaneous field of view (IFOV) commonly known139

to as the ‘golf ball’. From hereon in it shall be referred to as the AIRS field of regard140

(FoR).141

Introduced in the version 5 release of the L2 product (E. T. Olsen, Fishbein, Lee,142

& Manning, 2011), the trapezoid functions (F) are used map the compressed layer av-143

eraging kernel (A) on to the AIRS full retrieval grid. Associated with the averaging ker-144

nel and degrees of freedom of the retrieved profile products, these trapezoid functions145

also define the upper and lower bounds for which the retrieved layer quantities of wa-146

ter vapor, atmospheric temperature (T) and trace gases are defined. With this in mind,147

another factor to consider is that the retrieval state can only be perturbed as a super-148

position of the trapezoid during an iteration. The faces of each trapezoid equal 0.5 and149

drop off to zero linearly in ln(p) with the exception where they terminate at the top of150

atmosphere (TOA) or the surface. Here the trapezoid face extends without dropping off,151

this is often referred to as “halftop/halfbot”. The number of trapezoids are dependent152

on the parameter being retrieved (e.g. H2O=11), and therefore limits the independent153

structure that can be resolved. For further information on the trapezoids, layers and lev-154

els in the AIRS L2 products please see E. T. Olsen et al. (2011). Therefore, to interpo-155

late between the AIRS 100 level retrieval grid and the 11 H2O layers the layer averag-156

ing kernel A is mapped by multiplying it with the trapezoid function and its pseudo-157

inverse (F′):158

Ã = FAF′. (1)

Where Ã is the level averaging kernel. The result of mapping between the 11 layer159

and 100 level grids is shown in Figures 1a & 1b respectively. The averaging kernel also160

provides information content within the profile by summing the diagonal elements of the161

matrix. This is referred to as the degrees-of-freedom (DOF) of signal, and is the same162

value regardless of whether A or Ã is used in the calculation. Figure 1c presents the mean163

AIRS H2O DOF global distribution for 2007. The mean vertical distribution of the av-164

eraging kernel diagonal elements is illustrated in Figure 1d, where the cross section was165

calculated from nadir retrievals from 2007.166
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Figure 1. Example of an AIRS version 6 averaging kernel (A) over the Southern Great Plains

(SGP) site from the 24th of June 2009. This example demonstrates the employment of the trape-

zoid functions (F) which map the A from the 11 stored layers (1a), to the AIRS full 100 level

retrieval grid (1b). The total information content of the AIRS H2O profiles are represented by

the degrees-of-freedom (DOF). Average global DOF distributions for AIRS (2007) are shown in

(1c), with the vertical distribution (unitless) as a function of latitude (1d). Black dashed line in

(1d) is a climatological cold point tropopause calculated from AIRS L2 data. AIRS mean DOF

values for the version 5 humidity L2 product ranged between 4.46 in the tropics to 2.89 at the

poles (Maddy & Barnet, 2008).

2.2 Radiosondes167

This study employs two different radiosonde datasets to investigate the performance168

of AIRS H2O profiles. The first is based on operational radiosonde soundings from more169

than 900 global upper-air stations that were extracted from the UKMO data archive held170

at Centre for Environmental and Data Analysis (CEDA). This dataset consists of ver-171

tical profiles of temperature, dew-point temperature, wind speed and wind direction from172

the surface to altitudes generally between 20-30 km. While upper-air data can be report173

up to four times a day (00hrs, 06hrs, 12hrs & 18hrs UTC), the actual number of ascents174

varies widely between countries and stations. In the UKMO archive approximately two-175

thirds of stations report (at least) twice daily at 00:00 hrs and 12:00 hrs UTC. The UKMO176

receives upper air station data at standard resolution which measurements are reported177

at standard and significant pressure levels. Standard pressure levels are defined at 1000,178

925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 and 10 hPa. Significant179

pressure levels are added to improve the vertical description of the measurement pro-180

file, these can occur for example at levels in the profile where an inversion occurs or where181

there are significant changes in humidity not present in the standard levels. These ad-182

ditional levels are also intended to allow for profiles to be linearly interpolated such that183
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the temperature profile does not deviate from the observed value by more than 1 K be-184

low, and 2 K above 300 hPa (UKMO, 2006). This data record form the basis for the Char-185

acterised Radiosonde Measurement (CRM) Archive that is described in section 3.186

(b) CRM Radiosonde Stations (2007-2012)(a) GRUAN Radiosonde Stations (2007-2012)

Figure 2. Global distribution of radiosonde sites used in this study from the GRUAN (a)

and CRM (b) networks. Matches between AIRS and the respective radiosonde launches are

performed for the time period January 2007 to December 2012.

The second source of radiosonde measurements come from the GCOS Reference187

Upper-Air Network (GRUAN) (Dirksen et al., 2014; Immler et al., 2010) archive. GRUAN188

atmospheric soundings are reported on time intervals of 2 seconds during flight from the189

surface into the Upper Troposphere/Lower Stratosphere (UTLS) rather than the set pres-190

sure grid of the operational radiosonde archives. The higher vertical resolution of GRUAN191

data captures changes in humidity and temperature which can be missed or underrep-192

resented by standard and significant pressure levels of operational records. The scope193

of GRUAN is to provide long-term fiducial measurements that can be used for calibra-194

tion/validation exercises, the study of atmospheric processes and determining trends. Cer-195

tified GRUAN sites not only undergo an annual review, but are also subject to periodic196

auditing of their measurement programs to ensure all sites continue to meet GRUAN prac-197

tice standards. The global distribution of GRUAN sites used in this study are shown in198

Figure 2a.199

3 Characterising Operational Radiosondes200

Presented here is a description of the corrections applied to the identified RS92 ra-201

diosondes from the UKMO operational archive. The technique is based around correc-202

tion techniques developed in Miloshevich, Paukkunen, Vömel, and Oltmans (2004); Milo-203

shevich, Vömel, Whiteman, and Leblanc (2009); Miloshevich et al. (2006), and have been204

adapted for lower resolution operational profiles. This approach provides a statistical es-205

timate of the profile uncertainty which is crucial for understanding and assessing satel-206

lite retrieved profile performance. The global location of UKMO sites used are shown207

in Figure 2b. The original CRM record (Trent, 2015) used Murphy and Koop (2005) to208

calculate vapour pressures. However, for this study CRM was recalculated using Hyland209

and Wexler (1983) to be consistent with GRUAN.210

3.1 Radiosonde Correction and Uncertainty Estimation211

Published correction methods (Miloshevich et al., 2004, 2009, 2006) are performed212

on a standardised vertical temporal grid (6 second) representing the ascent of the bal-213

loon due to the time-dependent components to the sensor response. Global operational214

radiosonde databases, however only report on a subset of pressure levels which exclude215
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the relevant time information. Therefore, to interpolate onto a vertical time grid (or time216

profile) the ascent rate of the balloon needs to be estimated.217

The method employed for this study assumes a constant rate of ascent and deter-218

mines an uncertainty that is propagated through the correction method. To estimate the219

constant rate of ascent observations from the GRUAN data archive were used as they220

include ascent rate values. At the time of calculation the data record included 14,414221

soundings, with over 80 million individual measurements. Examination of the ascent rate222

data from GRUAN observations yields a mean value of 4.73 ms−1 ±0.86 ms−1 (Trent,223

2015). Next the time interval (δt) for adjacent pressure levels is calculated by convert-224

ing the difference between levels P1 and P2 from hPa into m (δz). This δz value is then225

divided by the ascent rate vz to yield δt. The time profile is then the cumulative sum226

of the δt values. Once the low resolution time profile has been created, the maximum227

(time) value is then used to create the appropriate number of levels for the 6 second ver-228

tical grid. The ascent time information is then used to interpolate the low resolution tem-229

perature, relative humidity (RH) and pressure profiles onto the 6 second grid.230

This method was tested on soundings from the UKMO Cambourne site to inves-231

tigate the effects of interpolation on the lower resolution profiles.The Cambourne site232

was chosen as; i) it was possible to obtain both low and high (temporal) resolution data233

products, ii) RS92 model radiosondes are used, iii) not part of the GRUAN network and234

iv) the site experiences a large variability of weather originating from the Atlantic ocean235

due to its location of the site in the south-west of the UK. This last point was the most236

significant reason for choosing Cambourne as the factors that have the biggest effect on237

the ascent rate are atmospheric density and the coefficient of drag outside factor retain-238

ing to the actual balloon itself. To ensure that a linear interpolation routine was suffi-239

cient for this task, five other algorithms; i) cubic spline, ii) quadratic, iii) least squares240

quadratic, iv) Akima (1970) and v) Akima (1991) were used on a test set of profiles mea-241

sured at Cambourne from 2009 (see Trent (2015) for further discussion).242

The low resolution profiles were interpolated using each algorithm, corrected and243

then compared back to the correct high resolution profile. The linear interpolation method244

performed as well, and in some cases, better than the other algorithms. In general dif-245

ferences are less than 0.5% RH below 300 hPa, with an increase to between 1.2 - 1.5%246

RH nearer 200 hPa. This increase is due to the lower sampling in the operational sound-247

ing which can fail to capture the dehydration in the UTLS accurately. Therefore, the248

limiting factor for the profile interpolation is the residual structure in the low resolution249

profile.250

The newly interpolated RH profile then has a time-lag correction applied to account251

for the response delay of the radiosonde sensors (Miloshevich et al., 2004):252

RHc =
RH− (RH(t0)×X)

1−X
, (2)

where X = e−
∆t
τ and ∆t = t − t0. Vaisala laboratory measurements of sensor253

time-lag (τ) which are given as a function of Temperature (T) are then used to calcu-254

late the corrected humidity (RHc) from the measured humidity (RH). By fitting a sim-255

ple exponential this gives the relationship:256

τ(t) = α× eA+BT, (3)

where A and B are constants (-0.7399 and -0.07718 respectively) and the scale fac-257

tor α (0.8) corresponds to approximately two standard deviations below the mean. This258

is an attempt to tackle this problem conservatively, meaning that 5% of sensors will be259

over corrected and 95% will be slightly under corrected. This approach simplifies the method260
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outlined in (Miloshevich et al., 2004). Next the interpolated profile is smoothed using261

a derivative based function (Miloshevich et al., 2004) that compensates for noise and hu-262

midity gradient amplification during the time-lag correction. The algorithm minimises263

the local third derivative which maximises ‘smoothness’ by constraining all the data points264

to within a specified tolerance of the original data. Therefore, vertical detail is retained265

while having a known maximum uncertainty in the smoothing operation. Further infor-266

mation can be found in Appendix B of Miloshevich et al. (2004). Finally the empirical267

mean bias correction is applied (Miloshevich et al., 2009), which corrects for a dry bias268

created by daytime solar heating of the radiosondes sensors.269

RHcorr = G(P,RH)× RHTLAG, (4)

where RHTLAG is the smoothed, time-lag corrected RH profile (RHc). The correc-270

tion factor G(P,RH) is generally:271

G(P,RH) =
100

(F(P,RH) + 100)
, (5)

where F(P,RH) is polynomial function fit to the RH profile:272

F(P) =

N∑
i=0

ai × Pi, (6)

here a and P are pre-computed coefficients and N is the order of the fit. This step273

accounts for mean calibration bias and for solar radiation error in daytime soundings,274

and they are valid from the surface to about 18 km altitude (100 hPa daytime).275

Once corrections are applied to an individual sounding there are several sources276

of uncertainty that need to be accounted for. These are described as either a fraction277

of the measured RH profile (%) or in absolute RH units (% RH). The night-time resid-278

ual bias uncertainty for RS92 corrections is primarily due to the statistical uncertainty279

in the mean cryogenic frost point hygrometer (CFH) (±2%) as well as an offset in RH280

uncertainty (±0.5% RH). Comparisons to microwave radiometer (MWR) also showed281

a calibration (production) batch-dependent variability of ±2% relative to the long-term282

mean. As this additional bias uncertainty is not representative of the majority of cases,283

therefore an “expected value” is adopted which when combined with other components284

gives an uncertainty estimate of bias of ±(3% + 0.5% RH). The time-dependence of un-285

certainty variability is a diurnal component of the total estimate and therefore applica-286

ble to daytime corrections. However, there is greater statistical uncertainty pertaining287

to this estimate which leads to a bias uncertainty of ±(4% + 0.5% RH). In addition to288

this, studies of an unpublished DWD data set of pre-launch ground checks at 100% RH289

for 2005-2008 highlighted a moist bias of 3% compared to the Miloshevich study (Milo-290

shevich et al., 2009). This was attributed to a change in the Vaisala calibration at the291

beginning of 2006 and represents a moist bias uncertainty of 1% resulting in an updated292

night-time uncertainty estimate of ±(4% + 0.5% RH) and a daytime uncertainty esti-293

mate of ±(5% + 0.5% RH). With the addition of the ascent rate uncertainty the final294

uncertainty estimates are ±(8% + 0.46% RH) and ±(9% + 0.46% RH) for night-time295

and daytime respectively.296

3.2 Comparison of GRUAN and CRM RH Profiles297

Before inference can be drawn from collocated AIRS and radiosonde profiles it is298

important to see how the different correction approaches compare. Common soundings299

from CRM and GRUAN are first identified before being sampled on the AIRS L2 stan-300

dard pressure levels. For a level to be sampled from either CRM or GRUAN the radiosonde301
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Table 1. Regression coefficients from comparisons of CRM and GRUAN RH profiles on the

lowest 12 AIRS standard pressure levels. Coefficients are calculated using orthogonal distance

regression, where β is the gradient and α is the intercept. The root mean square error (RMSE)

and intercept are given in units of relative humidity.

Pressure (hPa) β α (%) R RMSE (%)

100 0.91±0.01 1.11±0.02 0.94 1.3
150 0.93±0.01 1.20±0.03 0.89 2.3
200 0.98±0.01 1.45±0.08 0.94 6.5
250 1.00±0.01 1.68±0.10 0.96 6.7
300 1.00±0.01 2.03±0.13 0.97 6.0
400 1.02±0.00 2.98±0.09 0.99 5.2
500 1.04±0.00 2.89±0.07 0.99 5.2
600 1.06±0.01 3.36±0.21 0.97 8.8
700 1.04±0.01 2.92±0.15 0.99 6.3
850 1.02±0.01 2.43±0.23 0.98 5.9
925 1.01±0.00 2.67±0.18 0.99 4.4
1000 1.01±0.01 2.44±0.60 0.92 7.9

pressure level must be within 1 hPa of the AIRS grid. The collated radiosonde profiles302

are then analysed at each pressure level using orthogonal distance regression (ODR), as303

it accounts for uncertainties in both variables (Boggs and Rogers (1990)). The slope (β),304

intercept (α), correlation (R) and root mean square error (RMSE) are calculated for each305

level and presented in Table 1. From these results three key points stand out:306

1. in the mid-to-lower troposphere (altitudes below 500 hPa) CRM has an RH de-307

pendent bias of less than ±6% RH. The UTLS has the largest RH dependent bias308

of 9% at 100 hPa.309

2. CRM has a mean offset bias relative to GRUAN of 2.72% between 1000-300 hPa,310

which reduces to 1.34% at altitudes above 300 hPa.311

3. Higher RMSE values are found generally between 600-200 hPa indicating lower312

precision in the correction algorithm.313

In addition to a direct comparison of corrected RH values it is also possible to ex-314

amine the uncertainty distributions from CRM and GRUAN (Figure 3). Probability den-315

sity functions (PDFs) for both GRUAN and CRM were calculated using the Kernel Den-316

sity Estimation (KDE) method (Parzen, 1962; Rosenblatt, 1956):317

f(URH) =
1

nh

n∑
i=1

K

(
URH −URHi

h

)
, (7)

where f(URH) is the PDF for either CRM or GRUAN, URH is the respective ra-318

diosonde uncertainty, n is the number of data points, K is the kernel function and h is319

the bandwidth smoothing parameter. The KDE method is used here as it allows for the320

PDF to be estimated and compared without being effected by any discontinuities in ei-321

ther distribution. For this study, a Gaussian kernel density function is used and the band-322

width is calculated using Scott’s Rule (Scott, 2015). Once calculated for both GRUAN323

and CRM, the two PDFs (f(UCRM) & f(UGRUAN) respectively) are then compared by324

calculating the Hellinger distance, DH (Hellinger, 1909):325
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Figure 3. PDF distribution of RH uncertainties for CRM (blue) and GRUAN (orange) for the

lowest 12 standard AIRS pressure levels. Data is taken from common soundings found in both

data bases that cover 4 sites. The Hellinger distance (DH), a measure of the similarity between

the 2 PDFs is also displayed. At 250 hPa the 2 distributions start to diverge.

DH =
1√
2

√√√√ N∑
i=1

(
f(UCRM )i − f(UGRUAN )i

)2

. (8)

The Hellinger distance (Hellinger, 1909) is a metric used to measure the difference326

between PDF distributions, and is a probabilistic analogue of the Euclidean distance.327

A
√

2 is included to allow the distance values to range between 0 and 1. Where values328

exceed 1, the two distributions are completely different or non-comparable.329

From examination of Figure 3, RH uncertainty distributions of CRM and GRUAN330

visually look reasonably comparable. In the lowest 3 levels (1000-850 hPa) there are dis-331

tinct offsets between the separate PDF modal values with CRM being consistently higher332

than GRUAN. Between 700-400 hPa the bi-modal distribution in both uncertainty PDFs333

is similar as the Hellinger distances here are at their lowest. At 300 hPa CRM uncer-334

tainties begin to display a reduction in RH uncertainties between 4-8% relative to GRUAN.335

Here the Hellinger distance changes from ≈0.7 at the mid-troposphere to 1.0. At pres-336

sures 250-100 hPa the distributions diverge further and become distinctly different with337

values exceeding 1 (1.13, 1.28, 2.97 and 3.56 respectively). Here in the UTLS GRUAN338

displays a consistent higher RH uncertainty values in the trailing edge of the PDF.339
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4 Selection of AIRS Water Vapor Profiles for Validation340

Having discussed water vapor profiles in terms of RH so far, the analysis now switches341

to absolute concentrations. AIRS and radiosonde water vapor profiles are first converted342

mixing ratios, with the approach outlined in Nalli et al. (2013) used for AIRS. The vol-343

ume mixing ratio (VMR) is then calculated by multiplying the mixing ratio by the ra-344

tio of molecular weight of water to dry air. Due the large range of water vapor VMR val-345

ues found in the troposphere results are reported as scaled fractions of the absolute con-346

centration, or % ppmv.347

4.1 Collocation and Convolution of Water Vapor Profiles348

The approach used by this study considers an initial broad collocation criteria, with349

match-ups being removed through a secondary filtering process. For AIRS, a water va-350

por profile is considered collocated with a CRM or GRUAN sounding if the satellite mea-351

surement falls within ±3 hours and 100 km of the radiosonde launch. This approach yields352

1500-3000 monthly collocations with CRM, and 100-300 collocations with GRUAN af-353

ter 2009. With the use of broad criteria, any mismatch introduced in the collocation will354

impact on the performance of individual comparisons (Sun, Reale, Seidel, & Hunt, 2010;355

Sun et al., 2017). The impact of selected collocation temporal and spatial is in itself a356

large topic and goes beyond the scope of this study. We do however investigate and dis-357

cuss the impact of our match-up window on the collocation uncertainty in section 5.3.358

Profiles retrieved from AIRS (or any other remote sensing instrument) are not sim-359

ple measurements or representations of the atmospheric state rather a best estimate to360

which a smoothing function has been applied (Rodgers & Connor, 2003). The averag-361

ing kernel is used to smooth (or convolve) the radiosonde profile to the vertical resolu-362

tion of AIRS:363

xest = xo + Ã(xt − xo), (9)

where xo is the AIRS first guess profile, Ã is the averaging kernel that has been364

interpolated onto the 100 level retrieval grid using the trapezoid functions, xt is high res-365

olution reference profile on the AIRS 100 level grid, and xest is the convolved reference366

profile. Because changes in column density of water vapor in the thermal infrared (TIR)367

have greater linearity in log space relative to any absolute change, equation 9 is expressed368

as (Maddy & Barnet, 2008):369

ln(xest) = ln(xo) + Ã× ln
(xt

xo

)
. (10)

Once the matched radiosonde profile has been convolved three quality flags from370

the AIRS product are applied to the the radiosonde and AIRS water vapor profile. The371

first two flags define the upper and lower bounds of the retrieved AIRS profile. The PGood372

flag removes levels from upper atmosphere which do not meet quality control criteria,373

while the nGoodSup index flag defines the lowest surface level in the AIRS retrieval grid374

to be used. The Qual H2O flag describes the overall quality of the water vapor field, where375

the ‘Best’ retrievals have a Qual H2O of 0, ‘Good’ retrievals have a Qual H2O of 1 and376

‘Do not use’ for Qual H2O values of 2 (E. Olsen et al., 2013; E. T. Olsen et al., 2007).377

Individual values are then masked in both profiles at levels where:378

1. The pressure index is greater than the PGood flag.379

2. Pressure levels below the nGoodSup index.380

3. Qual H2O is equal to 2.381

4. AIRS retrieval uncertainty is greater than 25% ppmv.382
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5. Radiosonde uncertainty is greater than 20% ppmv .383

6. AIRS profile values below 20 ppmv. E. J. Fetzer et al. (2008) demonstrated the384

low end sensitivity limit of AIRS to absolute amounts of water vapor to be around385

15-20 ppmv in the UTLS. Values below this threshold are masked from the anal-386

ysis.387

7. Cloud fraction inside AIRS FoR is above 80%. Here we use a secondary indepen-388

dent estimate of cloud fraction from the Moderate Resolution Imaging Spectro-389

radiometer (MODIS) which is collocated on-board the Aqua platform with AIRS.390

This process on average removes 82% of the collocations. However, the initial col-391

lection of match-ups yields large numbers e.g. 1,301,655 of pairs at CRM sites. There-392

fore, after filtering large numbers of matched pairs still remain.393

5 Results394

This section presents the results of the AIRS match-ups to the 2 characterised ra-395

diosonde databases. The first set of results are shown as ‘global’ values or the total re-396

sult over all sites. CRM results are further filtered to only include available GRUAN sites397

to investigate the effects of differing global sampling. The global sampling of CRM is fur-398

ther used to understand AIRS water vapor biases as a function of latitude before finally399

providing the first estimates of collocation uncertainty between these match-ups. All re-400

sults are reported as % of absolute concentrations of water vapor in ppmv.401

The bias (∆q) between AIRS and the radiosonde water vapor profiles is defined402

as:403

∆q = 100×
(

(qA − qR)

qR

)
, (11)

where qA and qR are the AIRS and convolved radiosonde water vapor profile mea-404

surement respectively. Next the modified z score (Iglewicz & Hoaglin, 1993) provides a405

final filter that is applied to the data in order to identify outliers:406

z =
0.6745× (∆q− µ∆q)

σ∆q
, (12)

where µ∆q is the median AIRS layer difference and σ∆q is the median absolute dif-407

ference (MAD) of the AIRS layer differences. If the minimum calculated z value is greater408

than the theoretical maximum value
(

N−1√
N

)
, where N is the number of data points, then409

those points are considered non-Gaussian and a default bad data flag is assigned to that410

layer. All points whose |z| score is greater than 3.5 (recommendation by Iglewicz and Hoaglin411

(1993)) are removed. Both the measurements contribute a uncertainty for each point in412

the profile, so the uncertainty of the bias
(
U(δq)

)
is calculated using classical error prop-413

agation methods such that:414

U(δq) =

[(√
U(qA)2 + U(qR)2

qA − qR

)2

+

(
U(qR)

qR

)2] 1
2

× |∆q|, (13)

where U(qA) and U(qR) are the AIRS retrieved profile (Susskind, Blaisdell, & Iredell,415

2014) and characterised radiosonde profile uncertainty (Immler et al. (2010) in the case416

of GRUAN) respectively. Finally any propagated uncertainty is calculated as the linear417

combination of the average bias uncertainty and standard error:418
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U(∆q) =

[(
1

N

( N∑
i=1

U(δq)2
i

) 1
2

)2

+

(
σ∆q√

N

)2
] 1

2

. (14)

5.1 Global Results419

Table 2 presents the statistics from AIRS comparisons averaged over all available420

CRM and GRUAN sites along with a subset of CRM sites. Median biases are calculated421

on layers between adjacent levels in the AIRS standard L2 up to 250 hPa. This level was422

chosen as above this altitude the CRM and GRUAN uncertainties are non-comparable423

as evidenced by Figure 3. Results are split into three match-up scenarios:424

1. AIRS biases relative to all collocated GRUAN soundings (AIRS-GRUAN). These425

results indicate that both AIRS and GRUAN agree within 1.5 % ppmv for 4 low-426

est layers. This suggests i) AIRS data is suitable for climate records globally, ii)427

GRUAN data is very good for absolute bias.428

2. AIRS biases relative to all collocated CRM soundings (AIRS-CRM). While biases429

to CRM are higher than those relative to GRUAN they are generally less than ±15430

% ppmv, peaking between 600-500 hPa. While AIRS biases relative to CRM ap-431

pear higher, the global distribution of CRM stations allows assessment of latitu-432

dinal biases and the spread of AIRS data (GRUAN limits precision of compari-433

son).434

3. AIRS biases at collocated CRM stations that are common to both CRM and GRUAN435

(AIRS-CRMG). It is important to note that the AIRS-GRUAN and AIRS-CRMG436

do not contain exactly the same collocations due to differences in the 2 records437

i.e. common stations not soundings. However, what it does provide is ‘GRUAN-438

like’ sampling of CRM to assess the impact of differences in global sampling.439

All-sky biases were also examined as a function either very dry (XLow) or very wet440

(XHigh) atmospheres. The definition comes from Roman et al. (2016), where XLow and441

XHigh refer to TCWV thresholds of less than 5 kg m−2 and greater than 50 kg m−2 re-442

spectively. For collocations in very dry atmospheres AIRS shows a strong dry bias be-443

tween 700-300 hPa relative to GRUAN. A similar pattern is seen for CRM (& CRMG)444

matches though this is relative to the general all-sky bias and manifests as a reduction445

in the wet bias magnitude. For collocated AIRS profiles at both CRM and GRUAN sites446

in very wet atmospheres performance is within ±5 % ppmv in the mid-to-lower tropo-447

sphere. However, for GRUAN sites the uncertainty increases by an order of magnitude448

which can be attributed to the lower number of matched profiles.449

Results from these three scenarios are also split in to clear-sky matches and all-sky450

diurnal components in Table 2. Clear-sky biases consistently display relatively wetter451

biases compared to their all-sky, with the largest disparities seen in the mid-troposphere.452

E. J. Fetzer, Lambrigtsen, Eldering, Aumann, and Chahine (2006) demonstrated that453

the the AIRS infrared radiances only improved TCWV estimates by a few percent, there-454

fore the first AMSU first guess profile will still be dominating in clear-sky scenes. All three455

scenarios see drier daytime biases for the lowest two surface layers. In the mid-troposphere456

(700-300 hPa) AIRS is generally wet-biased relative the radiosonde measurements from457

both records. These biases are stronger for CRM comparisons, however this is expected458

as CRM has lower precision relative to GRUAN in this region (Table 1).459

Finally, it is important to note the 250-300 hPa layer results for AIRS-CRM which460

has the strongest bias from results presented in Table 2. Comparisons to CRM show an461

order of magnitude difference from AIRS-CRMG results and GRUAN. This layer at mid-462

to-high latitudes is sensitive to the tropopause where water vapor values will fall to ≈5463
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ppmv, well below AIRS sensitivity to absolute concentration of 15-20 ppmv (E. J. Fet-464

zer et al., 2008).465
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Figure 4. Latitudinal distribution of AIRS yearly median bias (∆q) and the median bias

uncertainty (U(∆q)) relative to CRM in % ppmv. The black dashed line is a climatological cold

point tropopause calculated from AIRS L2 data.

5.2 Latitudinal dependence466

Figure 4 shows median biases for AIRS relative to CRM as a function of latitude,467

altitude and year with the associated uncertainty. Here the relative global sampling of468

CRM can be used to examine spatial dependence of AIRS biases. Collocations are first469

grouped into yearly results before binned by latitude every 10 degrees between 90◦ south470

to 90◦ north for each atmospheric layer. Outside the tropics the lack of results in UTLS471

are due to radiosonde profiles not going higher than 200 hPa. This is because of poor472

sampling (especially in the southern hemisphere), and the filtering steps applied to the473

collocated profiles. While in the tropics there are some data for 200 hPa, section 3.2 demon-474

strated low confidence in results at pressure levels less than 250 hPa. Examination of475

the biases in this way highlight sensitivity in 4 key areas:476
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1. Deep convective regions. AIRS biases as a function of latitude show a general sen-477

sitivity to large scale atmospheric circulation. All years exhibit a predominant dry478

bias between 0◦ and 10◦ north that extends from the surface to the upper tropo-479

sphere. The lowest range of dry biases are seen in 2010 where the column values480

are between -8.85±1.14 % ppmv and -21.92±7.49 % ppmv (surface to 250 hPa).481

These values are representative of all other years except for 2008 where dry biases482

at this latitude are higher, ranging between -12.28±0.54 % ppmv and -49.31±1.47483

% ppmv in the upper troposphere.484

2. Hadley cell regions. Situated either side of the observed dry bias in the tropics are485

mid-latitudinal regions of wet bias situated in the centre of the Hadley cell region.486

Although these areas appear to be clearly defined in the northern hemisphere the487

highest values are observed in the south. The ‘wettest’ biases of 48.08±8.7 % ppmv488

is observed in 2011 at 500-600 hPa between 30◦S to 40◦S, though all years see re-489

gions where biases exceed 30 % ppmv.490

3. The southern hemisphere below 60◦S. At high latitudes in the southern hemisphere491

AIRS is extremely dry-biased compared to CRM. Sampling in this region catches492

stations on the Antarctic coast, South America and parts of Australia. These dry493

biases are predominately higher than other observed values and typically range494

between -25 % ppmv and -95 % ppmv. While these biases are high, for the south-495

ern hemisphere the uncertainty on the bias (with the exception of 2011) is below496

6% ppmv while on average below 3% ppmv. This region performs better than the497

mean uncertainty for latitudes between 30◦ and 10◦S. Below 70◦S in atmospheric498

layers sensitive to the UTLS the strong dry bias changes to a high wet bias.499

4. The UTLS. The final notable region involves the 250 to 300 hPa layer that is sen-500

sitive to the UTLS, between ±60◦. At these altitudes, depending on latitude there501

is a varying amount of stratospheric information included in the tropospheric re-502

trievals. Another key aspect to also consider is the lower confidence in the corrected503

CRM radiosonde profiles at these altitudes. In conjunction with the sensitivity504

of AIRS to low concentrations of water vapor (E. J. Fetzer et al., 2008) make this505

region challenging.506

While comparing one year to another one final aspect to consider is sampling. Fig-507

ure 5 shows the fractional difference of sampling within the 10◦ bins relative to 2007. In508

the majority of bins collocation numbers to CRM are lower than those in 2007. There509

are a few exceptions, in particular in 2008 there are almost twice as many collocations510

than in 2007 between 10◦N to 20◦N. The manifestation of variable sampling can be seen511

how the uncertainty in the median bias reduces. The right-hand-side of Figure 4 shows512

these uncertainties distributed as a function of latitude and pressure. The first thing that513

is noticeable is that there is a hemispherical split in the uncertainty as the higher num-514

ber of northern hemisphere station results in a majority of uncertainty values less than515

1 % ppmv. The second noticeable feature is a persistent region of high uncertainty val-516

ues between 30◦S and 10◦. In 2008 there is significant higher sampling relative to 2007517

where the uncertainties vary from 0.92 to 2.85 % ppmv, compared to to 2011 where sam-518

pling is significantly lower. Here the range in uncertainty varies between 1.44 and 4.74519

% ppmv. When considering GCOS-200 (GCOS, 2016) targets, consistent global sampling520

will be key to ensure the robust assessment of long-term stability in satellite records.521

5.3 Collocation Uncertainty522

A key advantage of using operational radiosonde networks is that they generate large523

numbers of matches relative to collocations performed at climate networks like GRUAN.524

With these larger numbers there is a higher confidence that the true bias is within the525

uncertainty of the reported median bias. However, the calculated uncertainty only par-526

tially describes the calculated bias. As the collocation framework is imperfect the un-527

certainty arising from the match up process also needs to be assessed. Characterising528
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Figure 5. Fractional difference in CRM collocations relative to 2007 as a function of latitude

(a-e). Bars represent the number of collocations before filtering in each 10◦ bin relative to 2007.

The lower number of collocation during 2011 are disproportionately higher in the southern hemi-

sphere. The right-hand-side (f-j) shows the fractional difference between sampling in the southern

and northern hemispheres normalised by the total northern hemisphere sampling for 2007. Data

again is binned in 10◦ latitudinal intervals from 0◦ to 90◦S. Again 2011 is highlighted, as the

lower number in total global soundings results smaller relative differences between the north and

south.

the collocation uncertainty is highly non-trivial and a focus for large European projects529

like Fidelity and uncertainty in climate data records from Earth Observations (FIDUCEO)530

and the Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM).531

In this study we employ the consistency test from Immler et al. (2010), which is also used532

in the NOAA Products Validation System (NPROVS) (Reale, Sun, Tilley, & Pettey, 2012)533

to estimate the collocation uncertainty (σ):534

|m1 −m2| < k ·
√
σ2 + u1

2 + u2
2, (15)

where m1 and u1 are the AIRS retrieved water vapor and retrieval uncertainty re-535

spectively, and m2 and u2 are the radiosonde measured water vapor and measurement536

uncertainty respectively. The coverage factor, k is the interval about the mean value as537

a multiple of the standard uncertainty (Immler et al., 2010). It should be noted that any538

error in the estimations of u1 and/or u2 would impact the collocation uncertainty, i.e.,539

all unknowns, all unclassified and inconsistencies would impact the collocation uncer-540

tainty.541

Cases are considered consistent where k is less or equal to 1 and in agreement when542

k is less or equal to 2. Therefore, to calculate σ three assumptions are applied to the data:543

1. The median bias is a robust estimate of the theoretical bias due to large number544

of collocations, which are in the order of 104 to 105 matches for the majority of545

bins.546
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2. The median bias is also agrees to some degree within the uncertainty, i.e. k ¡ 2.547

3. The uncertainties u1 and u2 correctly and fully describe the uncertainties of the548

two data records.549

Firstly equation 15 can be rewritten as:550

δm = k
(
σ2 + U2

δm

) 1
2

, (16)

where δm = |m1 −m2| and Uδm =
(
u1

2 + u2
2
) 1

2 . Next equation 16 is then rear-551

ranged to make σ the subject:552

σ =

[(
δm

k

)2

−U2
δm

] 1
2

. (17)

The collocation criteria for this study uses a basic set of parameters to match AIRS553

retrievals with CRM soundings. These can lead to large uncertainties in the collocation554

especially in regions of high variability, or by where the collocation is sampling completely555

different areas. Through averaging large numbers of matches the collocation uncertainty556

will reduce in the same manner as the uncertainty on the bias. In this study we then make557

the assumption that for the yearly statistics to be valid estimates for AIRS performance558

then they must also be either consistent (k = 1) or within agreement (k = 2) (Immler559

et al., 2010). Therefore, by substituting the values of 1 and 2 for k, σ can then be cal-560

culated. These results are shown in Figure 6 with the calculated collocation uncertainty561

assuming k is equal to 1 on the left-hand-side and for when k is equal to 2 on the right-562

hand-side.563

Under both these assumptions collocation uncertainty estimates in the northern564

hemisphere reduce to below 2 % ppmv within the troposphere (at altitudes below 250565

hPa), with most values below 1 % ppmv. The higher region of bias uncertainty seen be-566

tween 30◦S to 10◦S (Figure 4) is mirrored in the collocation uncertainty, especially so567

for the k = 2 hypothesis. All years see collocation uncertainties exceeds 20 % ppmv in568

this region, with the highest value seen in 2011 (70 % ppmv). The southern hemisphere569

is noticeably different in all years for both assumptions of k. The lower number of sta-570

tions (2) below the equator introduces structure into the collocation estimates with the571

higher values seen below -60◦ and above -30◦. Between these latitudinal zones higher val-572

ues are seen above 800-700 hPa, whereas nearer the surface values are close to their north-573

ern hemisphere counterpart. This lower surface collocation uncertainty is concentrated574

in the zone where longitudinally there is a higher density of stations. On the whole, col-575

location uncertainty in the southern hemisphere halves when the assumption on k is re-576

laxed from 1 to 2. The biggest impact on the collocation uncertainty is the sampling.577

The UTLS and 2009 Antarctic regions see the highest collocation values between 32 and578

47 % ppmv, with UTLS uncertainties not restricted to a single hemisphere. For 2011 the579

majority of all regions exhibit lower numbers of collocations (Figure 6), though this is580

not evenly distributed. For the UTLS confidence in CRM corrections falls relative to GRUAN,581

therefore some of the collocation uncertainty could also be attributed to unknown ad-582

ditional sources of bias not characterised during the CRM corrections.583

A further example of how the collocation uncertainty is effected by sampling is shown584

in Figure 7. For this experiment the temporal and spatial criteria for match-up selec-585

tion are halved to 50 km and ±1.5 hours respectively, and σk1 & σk2 recalculated. These586

new values are then subtracted from those shown in Figure 6, with the result represented587

by Figure 7. The stricter match-up criteria reduces the number of collocations to ≈10%588

(and lower) of the original values. This has the immediate impact in the region between589
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Figure 6. Yearly latitudinal distribution of collocation uncertainty (σ) between AIRS and

CRM water vapor profiles in % ppmv for two k statistic values. Plots on the left hand side of the

figure are the collocation uncertainties for the assumption that k = 1 (σk1), while the plots on the

right assume k = 2 (σk2). Like Figure 4 the black dashed lines are the climatological cold point

tropopause.

60◦S and 20◦N, where the sampling density is low. With fewer match-ups there is either590

i) a significant increase in σk due to a reduction in signal-to-noise, or ii) a higher frequency591

in missing data relative to the 100 km and ±3 hour window. In the Northern Hemisphere,592

the lower signal-to-noise causes σk to increase by less than 1 % ppmv on average for both593

k hypothesises. For match-ups below 60◦S, there is a average reduction in σk between594

1-2 % ppmv for most years. Collocations in this region come from Antarctica stations,595

which are mainly sited near the coast (Figure 2). This tighter match-up criteria acts to596

remove the majority of AIRS soundings over the Southern Ocean, which were inflating597

the collocation criteria.598

Ensuring that both the reference measurement, which is made over 90-120 minutes,599

and the almost instantaneous satellite observation are representative of one another is600

the main challenge when validating water vapor profile retrievals using radiosondes. With601

upper-atmosphere soundings launched at synoptic times (e.g. 00:00, 06:00, 12:00 & 18:00602

hrs) finding large numbers of coincident satellite overpasses requires broad criteria. These603
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Figure 7. Difference between collocation uncertainties shown in Figure 6 and their recalcu-

lated values when the collocation criteria are tightened to match-ups within 50 km and ±1.5

hours of launch. Reduction in the number of cases found for the stricter criteria results in higher

frequency of missing data (grey regions), especially between 40◦S and 20◦S.

results demonstrate that we can minimise the impact of σk if take large averages are used,604

which is fine when investigating yearly to decadal biases or stability. To understand per-605

formance on a sounding-by-sounding basis then capturing and characterising the full rep-606

resentativeness of each collocation is needed. This has advantages, especially when col-607

locating with Southern Hemisphere sites. The complexity of this approach goes beyond608

the scope of this study but remains a topic of interest to G-VAP.609

6 Discussion and Conclusions610

With over a decade of measurements, AIRS can provide the first Climate Data Record611

(CDR) of high-resolution humidity profiles from the new generation of hyper-spectral612

IR sounders. The provision of averaging kernels and other retrieval statistical outputs613

in the AIRS L2 support product has allowed us to assess the performance of AIRS wa-614

ter vapor in a mathematically and physically sound way not yet demonstrated in other615

studies. For this study we have used 2 characterised radiosonde data sets. While both616
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are accurate, one has higher performance (low bias) and the other provides greater lat-617

itudinal distribution. Unique to this study we use the uncertainties to help characterise618

the performance of AIRS water vapor biases, and apply the AIRS averaging kernels to619

the radiosonde profiles. Commonly used in trace gas validation, the application of av-620

eraging kernels in the convolution of a reference profile allows for like-for-like compar-621

isons of the collocated AIRS water vapor observations.622

In an initial study by Hagan et al. (2004), balloon soundings and aircraft measure-623

ments were used to look at AIRS version 3 retrieved water between 500-100 hPa. These624

first results found that AIRS had RMSE values of 25% or better for closely matched ob-625

servations (within 1 hour). This result was a significant improvement over the beta val-626

idation estimate of 50.5% (E. Fetzer et al., 2003) which used operational radiosondes.627

Studies using AIRS version 4 water vapor retrievals found profile biases were better than628

±15% when compared to a 2-year study with operational radiosondes (Divakarla et al.,629

2006). However, comparisons at dedicated sites from the study by Tobin et al. (2006)630

showed that profile biases were within ±5% below 400 hPa, with an increasing dry bias631

between 400-200 hPa of -10%. These biases were reported to be largely independent of632

cloud fraction. Our analysis of AIRS version 6 water vapor profiles with 6 years of GRUAN633

radiosondes shows improved performance relative to these studies. In all-sky conditions634

biases are below ±1.5 % ppmv between the surface and 600 hPa, while in clear-sky con-635

ditions (cloud fraction <1%) there is an observed increased wet bias relative to GRUAN.636

This behaviour is also observed with matches at CRM sites, though it is more pronounced637

with clear-sky wet biases exceeding 20 % ppmv. It could be thought that because CRM638

has denser sampling of very wet atmospheres that this would be responsible for the in-639

creased wet bias. However, analysis of AIRS performance in extreme wet and dry atmo-640

spheres in Table 2 does not suggest this as the sole reason as:641

1. GRUAN shows AIRS to have a small dry bias in the mid-to-lower troposphere in642

very dry water vapor columns and dry bias that increases in altitude for wet wa-643

ter vapor columns.644

2. Comparisons to CRM in the same region exhibit drier biases for the lower tropo-645

sphere for both extremes, with dry biases in wet atmospheres and wet biases in646

dry atmospheres.647

3. For the upper troposphere, CRM shows AIRS to be predominately wet-biased for648

both high and low TCWV thresholds, while the inverse is true for GRUAN.649

Therefore, this is suggestive that regions where TCWV amounts are between 5-50 kg m−2
650

the differences in regime variability influence the larger observed bias values. The diur-651

nal split for all scenarios in Table 2 confirms this with daytime matches showing wet-652

ter biases compared to night-time matches. Another point to consider here is that CRM653

also under-samples the vertical H2O profile relative to GRUAN, which could also be in-654

troducing a bias into the comparisons.655

A recent study by Wong et al. (2015) used collocated cloud properties from MODIS656

(Aqua) to assess cloud-induced uncertainties. This study demonstrated that AIRS has657

an increasing dry bias (-15 to -40%) as a function of cloud optical depth in the lower tro-658

posphere and that the largest dry biases (< -30%) occur in either high or low thick clouds.659

These dry biases occur around the same altitude as the cloud top pressure. They also660

showed that the AIRS physical retrieval actually reduced dry biases in the first guess in661

the presence of thin cloud. Further comparisons against reanalysis (Hearty et al., 2014)662

also attributed large dry biases (< -30%) in AIRS version 5 retrievals over mid-latitude663

storm tracks and deep convective clouds. Over stratus regions however, the authors found664

wet bias reaching up to 20%. Yue et al. (2013) confirm this in their study where they665

show that the total biases are dominated by cloud state-dependent sampling e.g. in deep666

convective regions. In the version 6 we still see sampling bias in convective regions, with667

strong dry biases located within the ‘convective pump’ straddled (north and south) by668
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a mid-tropospheric wet-biased regions. In this region we found AIRS is wet-biased by669

1.07±3.42 and 49.27±19.90 % ppmv to the descending air mass around the Hadley cells,670

while being dry-biased to the ascending air mass at the equator where the bias can ex-671

ceed 80 % ppmv. Understanding these biases over climate time scales is vital for stud-672

ies into water vapor feedback. In particular the largest contribution to the water vapor673

feedback stems from the tropical free troposphere, and the OLR is highly sensitive to674

changes at the dry end of the humidity distribution e.g. in regions of descending air masses675

around the Hadley cells.676

The assessment of satellite retrieved water vapor profiles for climate purposes poses677

a real challenge. The example of GCOS-200 (GCOS, 2016) target requirements (5% mea-678

surement uncertainty and a stability 0.3% per decade) are still optimal requirements as679

they have yet to be fully demonstrated. Individual profiles from satellite or radiosonde680

measurements can have relatively high associated uncertainties in addition to the rep-681

resentativeness of the collocation. In this study we use averaging over time scales of one682

and six years to reduce random uncertainty and collocation components. We assumed683

that averaging over large numbers of matches allows the collocation uncertainty to be684

considered consistent (Immler et al., 2010), even when we use broad collocation crite-685

ria. However, it has been shown by Pougatchev et al. (2009) that collocation criteria of686

30 minutes and 25 km or better are needed in order to obtain differences between radiosonde687

and IASI data within GCOS requirements. The implication of this would greatly reduce688

the number of available collocations for analysis, with the match-ups in the southern hemi-689

sphere all but removed.690

A new approach to estimate the collocation uncertainty was introduced by Kinzel691

et al. (2016) and refined in Liman, Schröder, Fennig, Andersson, and Hollmann (2018).692

They estimate the collocation uncertainty as a function of TCWV, near-surface specific693

humidity, near-surface wind speed and sea surface temperature (SST). The global mean694

collocation uncertainty is approximately 0.5 g kg−1 (ranging from 0.4 to 0.7 g kg−1, Li-695

man et al. (2018)) for the Hamburg Ocean Atmosphere Parameters and Fluxes from Satel-696

lite data (HOAPS, Andersson et al. (2017)). In this study the collocation uncertainty697

was estimated on yearly errors and thus shows smaller values. Assuming default clima-698

tological surface humidity values (Remedios et al., 2007) mean AIRS collocation uncer-699

tainties can be summarised as:700

1. Tropics (±20◦): A surface humidity of 27,250 ppmv results in collocation uncer-701

tainties between 241.15 to 313.83 ppmv (0.15 to 0.20 g kg−1, or 0.88 to 1.15 % ppmv).702

2. Mid-latitudes (20◦-60◦): A surface humidity of 11,660 ppmv results in collocation703

uncertainties between 62.11 1 to 71.69 ppmv (0.04 to 0.04 g kg−1 , or 0.53 to 0.61704

% ppmv).705

3. Polar summer (≥60◦): A surface humidity 7788 ppmv results in collocation un-706

certainties between 86.77 to 113.19 ppmv (0.05 to 0.07 g kg−1, or 1.11 to 1.45 %707

ppmv).708

4. Polar winter (≥60◦): A surface humidity of 2103 ppmv results in collocation un-709

certainties between 23.43 to 30.56 ppmv (0.01 to 0.02 g kg−1, or 1.11 to 1.45 %710

ppmv).711

These results are the average over all six years of AIRS collocations with CRM (Fig-712

ure 6), and for both consistency hypothesises (i.e k = 1 or k =2). By halving the match-713

up criteria we have shown that the majority of these estimates would increase, with the714

exception polar values for the Southern Hemisphere (Figure 7). Therefore, we assume715

that the consistency of the collocation uncertainty (representativeness) is affected by the716

collocation process which in turn will have an impact on our bias estimates. As more717

sites are added to the GRUAN inventory providing greater global coverage it should be718

possible to examine this aspect in further detail. Within the GAIA-CLIM project they719

showed that they could minimise the uncertainty in the collocation by using the 300 hPa720
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spatio-temporal information (Verhoelst et al., 2017). Operational radiosonde records such721

as CRM, the Analyzed Radiosonde Archive (ARSA) and the GCOS Upper-Air Network722

(GUAN) do not contain this information. Understanding the representativeness of col-723

locations with these records will improve validation efforts for climate analysis, where724

the satellite record exists outside of the GRUAN time line.725

When considering historical records, observed issues in stability and differences to726

the ensemble mean can be attributed to changes in the observation system (Schröder et727

al., 2016). When profiles are considered this attribution is still valid frequently, but less728

systematic. First results from the G-VAP characterisation of the long-term profile records729

in terms of bias have been published (Schröder et al., 2017). They show that regional730

maxima in systematic differences differ when different pressure levels are considered, with731

a focus on standard deviation and stability. Associated analysis will be further enhanced732

in future G-VAP activities. The work presented here can serve as an excellent case study733

to guide the characterisation in terms of bias during future studies within assessments734

of water vapor records. Note that regions with maxima in inter-comparison results gen-735

erally coincide with regions of sparse ground-based and in-situ data availability.736

An important pre-requisite for such an effort is the availability of high quality ref-737

erence data with uncertainty information. Here we have reprocessed global radiosonde738

data for the period January 2007-December 2012, and demonstrated feasibility for a re-739

processing of RS92 radiosonde archives. We also demonstrate the benefits of characterised740

measurements from GRUAN over the operational RS92 records, through the bias un-741

certainty estimates. A stable and bias corrected multi-station radiosonde archive is of742

high value for the validation of satellite-based water vapor products. Therefore, reduc-743

ing these uncertainties is key for the assessment of any climate record; with the produc-744

tion of a stable, characterised, global, retroactive radiosonde archive a real challenge. Fur-745

ther development and reprocessing of radiosonde data is needed to allow for satellite records746

spanning from the present back to the late 1970s to be exploited for climate analysis.747

The value of systematic differences can be enhanced if the total difference can be748

broken down into individual components. In the characterisation of the RS92 archive we749

also compare the vertical distribution of CRM uncertainty with those from GRUAN. One750

apparent difference is the inability of CRM to fully capture the random uncertainty com-751

ponent which could allow for collocated profiles that should be excluded during the con-752

sistency test to be included. A large variety of such structural uncertainties can contribute753

to the total bias (see Kummerow, Schulz, and Bojkov (2011) for a brief discussion).754

The AIRS version 6 water vapor product is an example of data which is based on755

the combination of hyper-spectral and microwave observations. Similar retrievals exist756

for IASI and The Cross-track Infrared Sounder (CrIS), though they have not been re-757

processed consistently until now. Incorporating observations from companion instruments758

such as AMSU and MODIS to characterise elements such as cloud fraction or surface mois-759

ture content would aid in constraining AIRS retrievals and further improving performance.760

As IASI and CrIS fly with similar companion instruments this approach could be applied761

across the board in the construction of a consistent water vapor CDR. With EUMET-762

SAT EPS-SG IASI observations will be sustained until beyond 2030, with a similar com-763

mitment from NOAA with CrIS through the Joint Polar Satellite System (JPSS) pro-764

gram. Thus, we may speak of a high potential for climate monitoring using hyper-spectral765

data in a forward looking sense. The challenge is to maintain the radiosonde systems and766

asses stability with both GRUAN and CRM, once GRUAN reaches decadal capacity across767

all sites.768
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Liman, J., Schröder, M., Fennig, K., Andersson, A., & Hollmann, R. (2018). Uncer-876

tainty characterization of hoaps 3.3 latent heat-flux-related parameters. Atmo-877

spheric Measurement Techniques, 11 (3), 1793.878

Maddy, E. S., & Barnet, C. D. (2008). Vertical resolution estimates in version 5 of879

–25–©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR: Atmospheres

airs operational retrievals. Geoscience and Remote Sensing, IEEE Transactions880

on, 46 (8), 2375–2384.881
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(b) CRM Radiosonde Stations (2007-2012)(a) GRUAN Radiosonde Stations (2007-2012)
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