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Abstract— This paper provides an overview of the valida-
tion of the operational atmospheric vertical temperature pro-
file (AVTP) and atmospheric vertical moisture profile (AVMP)
environmental data record (EDR) products retrieved from
the Cross-track Infrared Sounder (CrIS) and the Advanced
Technology Microwave Sounder (ATMS), two passive sound-
ing systems onboard the Suomi National Polar-Orbiting Part-
nership (SNPP) satellite. The CrIS/ATMS suite serves as the
U.S. low earth orbit (LEO) satellite sounding system and
will span the future Joint Polar Satellite System (JPSS) LEO
satellites. The operational sounding algorithm is the National
Oceanic and Atmospheric Administration-Unique Combined
Atmospheric Processing System (NUCAPS), a legacy sounder
science team algorithm capable of retrieving atmospheric profile
EDR products with optimal vertical resolution under nonprecip-
itating (clear to partly cloudy) conditions. The SNPP NUCAPS
AVTP and AVMP EDR products are validated using extensive
global in situ baseline data sets, namely, radiosonde observations
launched from ground-based networks and ocean-based intensive
field campaigns, along with numerical weather prediction model
output. Based upon statistical analyses using these data sets,
the SNPP AVTP and AVMP EDRs are determined to meet the
JPSS Level 1 global performance requirements.

Index Terms— Atmospheric profiles, calibration/validation
(cal/val), environmental satellite, Joint Polar Satellite
System (JPSS), National Oceanic and Atmospheric Admin-
istration (NOAA)-Unique Combined Atmospheric Processing
System (NUCAPS), retrieval, soundings, Suomi National
Polar-Orbiting Partnership (SNPP).
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I. INTRODUCTION

THE U.S. Suomi National Polar-Orbiting Partner-
ship (SNPP) satellite was launched in 2011 and

is the first operational U.S. satellite to feature the
high spectral-resolution (“hyperspectral”) Cross-track Infrared
Sounder (CrIS) and Advanced Technology Microwave
Sounder (ATMS) sounding system (previously referred to
collectively as the Cross-track Infrared Microwave Sounder
Suite (CrIMSS) [1]). The follow-on Joint Polar Satellite
System (JPSS) is a U.S. National Oceanic and Atmospheric
Administration (NOAA) operational satellite mission, in col-
laboration with joint international partnerships and the U.S.
National Aeronautics and Space Administration [2], that will
support NOAA’s weather, climate, and environmental moni-
toring missions by providing operational timely global data
to users. JPSS series will feature CrIS/ATMS onboard four
satellites launched in the same orbit over the next two
decades beginning in 2017. The CrIS/ATMS sounding sys-
tem is designed to measure well-calibrated infrared (IR) and
microwave (MW) radiances or sensor data records (SDRs)
for synergistically retrieving atmospheric vertical profile envi-
ronmental data records (EDRs) under nonprecipitating condi-
tions (clear, partly cloudy, and cloudy) with relatively high
vertical resolution (≈2–5 km) in much the same manner as
predecessor sounding systems, namely, the MetOp-A and -B
IR Atmospheric Sounding Interferometer (IASI) [3], [4] and
the EOS-Aqua Atmospheric IR Sounder (AIRS) [5], [6]. The
CrIS instrument is an advanced Fourier transform spectrometer
that measures high-resolution IR spectra in 1305 channels over
three bands spanning ν = [650, 2550] cm−1 (high spectral
resolution is hereafter simply referred to as “hyperspectral”).
The ATMS is an MW sounder with 22 channels ranging
from 23 to 183 GHz [7]. These two instruments operate in
an overlapping field-of-view (FOV) formation analogous to
AIRS, with ATMS FOVs resampled to match the location and
size of the 3×3 CrIS FOVs for retrievals under clear to partly
cloudy conditions.

While hyperspectral sounder SDRs (radiances) have
generally come to be directly assimilated into global numerical
weather prediction models via variational analysis schemes,
they also continue to be directly inverted operationally to

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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retrieve orbital atmospheric profile EDRs in near-real time as
originally envisioned by satellite sounding pioneers [8]–[13].
The operational EDR retrieval algorithm for CrIS/ATMS
is currently the NOAA-Unique Combined Atmospheric
Processing System (NUCAPS) developed at NOAA/National
Environmental Satellite Data and Information Service
(NESDIS)/Satellite Applications and Research (STAR) [14],
[15], which superseded the original Interface Data Processing
Segment (IDPS) CrIMSS algorithm in September 2013.
The NUCAPS algorithm processes CrIS/ATMS data based
on the heritage methodology developed for the EOS-Aqua
AIRS and MetOp IASI systems, with the retrieval algorithm
being a modular implementation of the multistep AIRS
Science Team retrieval algorithm version 5 [16], [17].
For more details on the NUCAPS algorithm, the reader
is referred to [15] and [16], or the algorithm theoretical
basis document [18] available online. The primary EDR
parameters retrieved by NUCAPS are the atmospheric
vertical temperature profile (AVTP) and atmospheric vertical
moisture profile (AVMP), which are output on the University
of Maryland Baltimore County (UMBC) radiative transfer
algorithm (RTA) [19] 100 levels (i.e., layer boundaries) and
layers, respectively. In addition to AVTP and AVMP, NUCAPS
retrieves ozone (O3) and carbon trace gases, including carbon
monoxide (CO), carbon dioxide (CO2), and methane (CH4)
profile EDRs on 100 RTA layers. Current users of the
NUCAPS EDRs include NOAA National Weather Service
weather forecast offices via the Advanced Weather Interactive
Processing System. Sounder EDRs are also invaluable for
numerous global environmental research studies [20], [21].

The NUCAPS algorithm operates under clear to par-
tially cloudy conditions by first cloud-clearing [16] the
3 × 3 CrIS FOV arrays, which are referred to as the “field of
regard” (FOR). Fig. 1 shows a schematic of the CrIS/ATMS
FOV sampling for an example NUCAPS FOR. The current
method selects a 3 × 3 array of ATMS footprints1 based
on a center footprint matched with CrIS, and then simply
averages the antenna temperature data records (TDRs) for each
channel to obtain the value for a single MW footprint (thereby
emulating the earlier AIRS/AMSU configuration illustrated
in [5]). Although there are more sophisticated ways of doing
this (e.g., matching individual footprints instead of simply the
center), they have been found to have very small impact and
may even lead to scene-dependent biases. Then, by assum-
ing that radiance differences in the FOV are only due to
clouds, a “clear-column” IR radiance spectrum is extrapolated
for each FOR. More details and discussion on the cloud-
clearing methodology and cloud-cleared radiance product can
be found in numerous previously published papers [14], [16],
[22]. The multistep NUCAPS physical retrieval module then
retrieves individual parameters sequentially (as opposed to
simultaneously), using only channels rigorously determined
to be sensitive to each parameter [23], beginning with tem-
perature, then water vapor, followed by ozone and other
trace gases. Fig. 2 shows the selected CrIS IR channels in

1The term “footprint” refers to the sensor FOV projected onto the earth’s
surface.

Fig. 1. Example CrIS/ATMS FOV configuration for a single NUCAPS FOR
used for cloud clearing. The cross-track scanning direction is roughly top
left/bottom right and the gray unfilled ellipses show approximate ATMS FOV
footprints for a beam width of 1.1° (channels 17–22) [7]. The gray ellipses
show the 3 × 3 CrIS FOV footprints comprising a NUCAPS FOR, and the
black unfilled ellipses show the selected ATMS footprints (based on the center
footprint matched to a CrIS footprint) comprising an effective MW FOV
analogous to the AIRS/AMSU configuration [5]. The ellipses depicted are
approximations for illustration purposes only and do not represent the exact
spatial footprints of those instruments.

the longwave, midwave, and shortwave IR bands used for
the AVTP and AVMP retrievals. The operational NUCAPS
algorithm (version 1.5) has run on nominal CrIS resolution
spectra at �ν ≈ 0.625, 1.25, and 2.5 cm−1 for the longwave,
midwave, and shortwave IR bands, respectively [1], [2].

To ensure that the SNPP NUCAPS-retrieved EDR products
meet their mission specification objectives, in this paper,
we have conducted a formal validation of the AVTP and
AVMP EDRs (v1.5 nominal CrIS resolution) using radiosonde
collocations from land-based networks and ocean-based
dedicated launches. Section II provides an overview of the
JPSS EDR calibration/validation (cal/val) program, Section III
characterizes the operational algorithm performance (v1.5)
based on rigorous statistical analyses, and finally Section V
presents preliminary results (i.e., based on numerical model
comparisons) of the NUCAPS algorithm for CrIS full-
resolution data delivered in July–August 2017 (v2.0.5) in
preparation for the launch of the JPSS-1 satellite. Validation
of the operational NUCAPS IR ozone profile product will be
the subject of the Part 2 companion paper.

II. JPSS SOUNDER EDR CAL/VAL OVERVIEW

The direct goal of validating EDRs is to provide a general
assessment and error characterization of the retrieved para-
meters relative to an assumed “truth” (or baseline) data set.
Continued assessments in this manner in turn enable ongoing
development and/or improvement of algorithms. Validation
of EDRs can also facilitate the routine monitoring of SDRs
from which they are derived (e.g., sea surface temperature
EDRs [24]).

To support cal/val and long-term monitoring (LTM) of the
SNPP satellite SDRs and retrieved EDRs, the JPSS cal/val pro-
gram defines four phases for cal/val of sensors and algorithms
throughout the satellite mission lifetime [25]: prelaunch, early
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Fig. 2. Hamming apodized CrIS IR brightness temperature spectra for
a marine nighttime case (10:22 UTC June 9, 2015, 6.5°N, 130.0°W)
showing temperature and water vapor channels (blue and green circles,
respectively) used in the NUCAPS multistep physical retrieval. (Top) Long-
wave IR (unapodized nominal resolution 0.625 cm−1). (Middle) Midwave
IR (unapodized nominal resolution 1.25 cm−1). (Bottom) Shortwave
IR (unapodized nominal resolution 2.5 cm−1).

orbit checkout, intensive cal/val, and LTM. In accordance with
the JPSS phased schedule, the SNPP CrIS/ATMS EDR cal/val
plan was devised to ensure that the EDR would meet the
mission Level 1 requirements [26]. The CrIS/ATMS EDR
cal/val plan for the successor JPSS-1 satellite (or “J-1”)
was drafted during July–August 2015 and submitted on
December 31, 2015.

The JPSS Level 1 performance requirements2 for AVTP and
AVMP are reproduced in Tables I and II, respectively. These
serve as the metrics by which the system is considered to
have reached validated maturity and met mission requirements.
It is noted that the requirements are defined for global non-
precipitating cases on three to five atmospheric “broad layers”
that are computed as an average of “coarse layers” ranging
from 1–5 km in thickness for AVTP and 2 km for AVMP.
“Partly cloudy” conditions are defined by a successful cloud-

2In satellite product parlance, “Level 1” typically refers to the lowest level
of the product chain (e.g., raw data records or SDRs) whereas “Level 2” refers
to higher level EDRs or retrievals. However, in the current context of JPSS
requirements, “Level 1” is a programmatic term that refers to the “highest
level” program requirement.

TABLE I

JPSS LEVEL 1 REQUIREMENTSa FOR CRIS/ATMS
AVTP MEASUREMENT UNCERTAINTY

TABLE II

JPSS LEVEL 1 REQUIREMENTSa FOR CRIS/ATMS
AVMP MEASUREMENT UNCERTAINTY

clearing and IR retrieval converging to a solution. Conversely,
“cloudy” conditions are defined by cases where cloud clear-
ing is not successful and the IR algorithm is not able to
converge to a solution, thereby resulting in an MW-only
algorithm solution as the final product. It is in this manner that
the NUCAPS system is capable of providing AVTP/AVMP



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

retrievals for global nonprecipitating conditions. The original
IDPS CrIMSS operational algorithm was validated through
beta and provisional maturities [27], and the successor SNPP
NUCAPS algorithm formally attained validated maturity in
September 2014 [25] based on the analyses detailed below.

III. TEMPERATURE AND MOISTURE PROFILE ASSESSMENT

Satellite sounder EDR validation methodology has been
well established in previous validation work (i.e., with AIRS
and IASI), with the various approaches being roughly clas-
sified as part of a hierarchy that includes [28]: 1) global
numerical model comparisons; 2) satellite EDR intercompar-
isons; 3) conventional radiosonde assessments; 4) dedicated/
reference radiosonde assessments; and 5) intensive campaign
dissections. Those at the beginning of the hierarchy are
typically employed in the early cal/val stages of a satellite’s
lifetime, whereas those near the top are employed during later
stages.

A. Data

To allow for adequate validation of the SNPP operational
sounder EDRs, JPSS has directly and indirectly funded a
dedicated radiosonde program leveraging several collaborat-
ing institutions. Dedicated radiosonde observations (RAOBs)
are optimally collocated and synchronous with SNPP over-
passes at various selected sites. In addition, we have lever-
aged Global Climate Observing System Reference Upper
Air Network (GRUAN) RAOB sites (discussed in detail
below). Collocations of NUCAPS CrIS/ATMS FORs with
RAOBs are facilitated via the NOAA Products Validation
System (NPROVS) [29]. NPROVS routinely collocates single-
closest EDR profile retrievals from multiple platforms (includ-
ing SNPP) with RAOB launch “anchor points.” Using this base
RAOB-satellite collocation system, an EDR validation archive
has been created whereby CrIS SDR and ATMS TDR granules
in the vicinity of RAOB “anchor points” are acquired for
running offline retrievals, thus allowing flexibility and ongoing
algorithm optimization and development.

Fig. 3 shows JPSS-funded dedicated RAOB sites
for the SNPP sounder validation effort through 2016.
These include U.S. DOE Atmospheric Radiation
Measurement (ARM) sites [30], [31], namely, Southern
Great Plains (SGP), North Slope of Alaska (NSA), Tropical
Western Pacific (TWP) (Manus Island), and Eastern North
Atlantic (ENA) sites. (The TWP site was discontinued
in August 2014 and funded dedicated launches were
subsequently transferred to the ENA site.) JPSS has also
supported ship-based dedicated radiosondes during intensive
campaigns of opportunity over open ocean during the
2013a,b/2015 NOAA Aerosols and Ocean Science Expedi-
tions (AEROSE) [32], [33] and the January–February 2015
CalWater ARM Cloud Aerosol Precipitation Experi-
ment (ACAPEX) [21], [34]. In addition to these, two
collaborative land-based sites of opportunity (with data
acquisition objectives spanning satellite sounder validation)
include the Howard University Beltsville Center for Climate
System Observation (BCCSO) site in Beltsville, Maryland,
and combined RAOB and lidar data collected by the

Fig. 3. SNPP-dedicated and GRUAN reference RAOB truth sites used
for JPSS CrIS/ATMS EDR cal/val over the period 2012–2016. Blue cir-
cles denote ARM sites (NSA, SGP, TWP, and ENA), red triangles denote
collaborative partner sites (BCCSO and PMRF), magenta squares denote
collocated GRUAN reference sites (LIN, CAB, and SOD), and different
colored lines denote ocean-based intensive campaign ship tracks (AEROSE
and CalWater/ACAPEX). Map projection is equal area.

Aerospace Corporation from the Pacific Missile Range
Facility (PMRF) site in Kauai, Hawaii [35]. Finally, there are
three GRUAN sites that fortuitously happen to collocate well
with SNPP overpasses; these are Lindenberg (LIN), Germany,
Cabauw (CAB), the Netherlands, and Sodankyla (SOD),
Finland [36]. These sites “automatically” collocate because of
the local time zone, which is approximately UTC +1 h. Given
that synoptic launch times are at 00 and 12 UTC, the local
times of launches from these sites are ≈01:00 and 13:00 LT.
The sun-synchronous SNPP orbit has local equator crossing
times of 01:30 and 13:30 LT; thus, the satellite happens to
overpass these locales just following the launches, thereby
fortuitously “mimicking” dedicated launches.

B. Error Analysis

Using these in situ data as the baseline, we compute coarse-
layer and broad-layer uncertainties (defined in Section II) for
AVTP and AVMP EDRs derived from an offline emulation3

of the operational NUCAPS algorithm running on nominal
CrIS resolution data (version 1.5). Details on the methodol-
ogy for calculating coarse-layer statistics, namely, bias, stan-
dard deviation (σ ), and root-mean-square uncertainty (RMSE)
are described in [28]; for AVMP, we consistently apply
W 2 moisture weighting to both the bias and RMSE cal-
culations [28]. To minimize mismatch error in our statis-
tical analyses, stringent space–time collocation criteria are
applied, namely, quality-accepted retrievals within δx ≤ 75 km
radius and −60 < δt < 0 min of launches (the time
criterion ensures that the radiosonde is airborne coinci-
dent with the satellite overpass). These criteria strike a
good balance between sample size and mismatch error [37].
For the MW-only retrievals, it is noted again here that
the JPSS requirements are specified for “cloudy” cases
(i.e., >50% cloudiness, defined by failure of the IR algo-
rithm to obtain an accepted solution; see Section II); thus,

3The offline code is an exact emulation of the operational code. However,
the offline version generates additional diagnostic output files in Level 2 binary
format, which facilitate validation on large samples. The offline code also
enables algorithm development.
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Fig. 4. Geographic histogram of SNPP CrIS/ATMS FOR-RAOB showing
zonal representation of collocation data used in the global land/sea statistical
error analysis. Circle areas depict the relative SNPP-RAOB collocation sample
sizes for each RAOB launch location (prior to zonal and land/sea area
weighting described in the text). Map projection is equal area.

the MW-only samples are given by cases accepted by the
MW-only quality flag but rejected by the IR+MW quality flag.
Fig. 4 shows a geographic histogram (on an equal-area map
projection) of the distribution of the RAOB collocation sample,
where it can be seen that the combination of the RAOB
sites described above provides an adequate coverage of global
climate zones (tropics, midlatitudes, and polar) along with land
and ocean surfaces. However, it is also noted that midlati-
tude land-based sites tend to dominate the sample, whereas
the JPSS Level 1 requirements are derived based on global
model calculations that cover the earth’s ocean/land/zonal
surface areas. Therefore, we subsequently apply a geographic
zonal area weighting scheme over 15°latitude zones and
land/sea surface areas in our statistical calculations. This
scheme gives proportionately greater weight to tropical ocean
RAOB collocations and lesser weight to high-latitude land-
based collocations, which is in accordance with the JPSS
requirements implicitly having such weighting built in.

The resulting global profile error statistics for AVTP
and AVMP are given in Figs. 5 and 6, respectively.
Figs. 5 (right) and 6 (right) show the bias statistics given
by the coarse-layer means with ±1σ given by the error
bars. The JPSS Level 1 specification requirements are
defined in terms of RMS statistics shown with dashed lines
in Figs. 5 (left) and 6 (left). The corresponding broad-layer
results for AVTP and AVMP retrievals are shown with aster-
isks and summarized in Tables III and IV, respectively. We find
that both EDRs meet the JPSS requirements for both IR+MW
and MW-only cases, with the only exception being MW-only
AVTP for the upper tropospheric layer (30–1 hPa), which falls
somewhat outside of the 1.5 K requirement for this layer.
However, we see in Fig. 5 that the collocation samples fall off
dramatically starting at about 14 hPa as radiosonde balloons
tend to burst somewhere below this level. In fact, it should be
noted that the available 15 data points in the top two layers
above 5 hPa are due to merged lidar-RAOB data provided
by the PMRF site [35]. In Fig. 5 (right), an elevated random
error (magenta ±1σ bars) occurs in the coarse layer between
10 and 5 hPa, and a significant negative bias (magenta line)
occurs above 2 hPa, although this cannot be considered
statistically significant. It should be noted that the MW-

Fig. 5. Coarse-layer statistical uncertainty assessment of the NUCAPS
AVTP EDR retrievals (offline v1.5 operational emulation) versus collocated
dedicated/reference RAOBs for retrievals accepted by the quality flag within
space–time collocation criteria of δx ≤ 75 km radius and −60 ≤ δt ≤ 0 min
of launches over a sampling period of January 9, 2013 to December 13, 2015.
(Left) RMSE results. The light-blue dashed line in the RMS plots designate
the JPSS Level 1 global performance requirements for “broad layers,” and the
asterisks show the calculated broad-layer RMSE. (Right) Bias ±1σ results.
NUCAPS IR+MW (clear to partly cloudy, defined by IR+MW accepted
cases) and MW-only (cloudy, defined by the intersection of MW-only accepted
cases and IR+MW rejected cases) performances are given in blue and
magenta, respectively, with IR+MW collocation sample size for each coarse
layer given in the right margins.

only samples correspond to cases rejected by the IR+MW
quality flag; thus, sample sizes are ≈30% the IR+MW sizes
and generally correspond to more difficult geophysical cases.
A more detailed examination of the AVTP performance from
110 to 10 hPa versus radio occultation measurements showing
comparable results can be found in [38].

The reader may also have noted that in Fig. 6, the AVMP
results for the 300–100 hPa broad layer fall outside the require-
ment lines for both the IR+MW (blue asterisk) and MW-only
retrievals, with an oscillation between significant positive and
negative biases in the two coarse layers comprising the broad
layer. Some of these discrepancies are believed to be associ-
ated with biases and precision limitations in the RAOBs. For
RAOB temperature, it is due to radiation-induced biases [39],
and for moisture, it is associated with extremely low water
vapor conditions, a known problem at higher levels of the
troposphere [40]. For moisture, this explanation is supported
by a completely consistent pattern of discrepancies in bias with
profiles from the European Centre for Medium-Range Weather
Forecasts (ECMWF) model as seen in Fig. 7. Nevertheless,
the JPSS threshold requirements for AVMP (Table II) allow
for the greater of a fractional error (%) or an absolute
error (g kg−1). The AVMP results summarized in Table IV
show in the last column absolute errors of 0.02 g kg−1, which
are well below the 0.1 g kg−1 threshold, and thus in spite of the
fractional differences the moisture product nevertheless meets
requirements in the upper layer. Based on the above results,
we have concluded that the operational SNPP NUCAPS AVTP
and AVMP EDRs meet the JPSS Level 1 requirements; similar
statistical results versus RAOBs have been observed in [41].
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Fig. 6. Coarse-layer statistical uncertainty assessment of the NUCAPS
AVMP EDR retrievals (offline v1.5 operational emulation) versus collocated
dedicated/reference RAOBs for retrievals accepted by the quality flag within
space–time collocation criteria of δx ≤ 75 km radius and −60 ≤ δt ≤ 0 min
of launches over a sampling period of January 9, 2013 to December 13, 2015.
(Left) RMSE results. The light-blue dashed line in the RMS plots designate
the JPSS Level 1 global performance requirements for “broad layers,” and the
asterisks show the calculated broad-layer RMSE. (Right) Bias ±1σ results.
NUCAPS IR+MW (clear to partly cloudy, defined by IR+MW accepted
cases) and MW-only (cloudy, defined by the intersection of MW-only accepted
cases and IR+MW rejected cases) performances are given in blue and
magenta, respectively, with IR+MW collocation sample size for each coarse
layer given in the right margins.

TABLE III

VALIDATED GLOBAL AVTP EDR MEASUREMENT UNCERTAINTY

IV. LONG-TERM MONITORING

The LTM of sounder profile EDRs is facilitated using
conventional RAOB launches from synoptic WMO sites
due to their ongoing regular launch schedule. Conventional
RAOB collocations are routinely obtained via NPROVS,
which collocates single-closest EDR profile retrievals from
multiple platforms (including SNPP) with RAOB launch
“anchor points” [29] and provides graphical user interface
Java applet tools to assist EDR algorithm developers, users,
and validation scientists in the routine monitoring and diag-
nostic troubleshooting of sounding products. Profile statis-
tics based on conventional RAOBs have been found to be
similar to those obtained based on dedicated/reference RAOBs,
as reported in [41].

Fig. 7. Statistical uncertainty assessments versus RAOBs of NUCAPS
IR+MW moisture profile retrievals (blue lines) alongside collocated ECMWF
output (analysis or forecast nearest in time) for reference (cyan lines).
(Left) RMSE results. (Right) Bias ±1σ results.

TABLE IV

VALIDATED GLOBAL AVMP EDR MEASUREMENT UNCERTAINTY

While NPROVS will always provide a low earth orbit (LEO)
satellite collocation with the RAOB using an inclusive
±6 h time window with launch times (scanning instruments
onboard sun-synchronous LEO satellites provide twice-daily
near-global coverage), in this paper, we attempt to minimize
mismatch error by employing tight space–time collocation cri-
teria. For NPROVS-collocated conventional RAOBs, we keep
only single-closest FORs within δx ≤ 25 km radius and
−30 < δt < 0 min of launches (δt ≡ traob − tsat).
A typical distribution of conventional RAOB collocations
with SNPP acquired over a month’s time period is shown
in Fig. 8. NPROVS archive statistics (NARCS) for monthly
mid-troposphere temperature and moisture versus conventional
RAOB collocations over the course of the SNPP mission life
are shown in Figs. 9 and 10, respectively. Blue lines show
the results of the NUCAPS IR+MW retrievals (clear to partly
cloudy), and cyan lines show the collocated AIRS retrievals
for comparison. The solid lines show the bias statistics, and
the dotted lines show the RMS statistics. These results show
reasonable interannual stability in the NUCAPS EDRs, with
comparable performance against those obtained from the AIRS
relative to RAOBs with the primary exception being somewhat
superior performance of AIRS AVTP relative to RAOBs;
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Fig. 8. NPROVS conventional synoptic RAOBs collocated with SNPP
NUCAPS retrievals for June 2015 (single-closest FOR within 50-km radius
of radiosonde launch sites and 0–30 min following launches).

Fig. 9. NPROVS NARCS monthly statistical time series for NUCAPS
(operational v1.5) and AIRS (v6) temperature EDR retrievals versus collocated
conventional RAOBs at a nominal mid-tropospheric RTA level (565.2 hPa).
The solid and dotted lines show the bias and RMSE results, with blue,
magenta, and cyan lines indicating the NUCAPS IR+MW (clear to partly
cloudy), MW-only (cloud), and AIRS retrievals, respectively.

Fig. 10. NPROVS NARCS monthly statistical time series for NUCAPS
(operational v1.5) and AIRS (v6) moisture EDR retrievals versus collocated
conventional RAOBs at a nominal mid-tropospheric RTA level (565.2 hPa).
The solid and dotted lines show the bias and RMSE results, with blue,
magenta, and cyan lines indicating the NUCAPS IR+MW (clear to partly
cloudy), MW-only (cloud), and AIRS retrievals, respectively.

AIRS represents a mature validated system [30], [42]–[45].
The improvement in accuracy of AIRS is believed to be at
least in part due to the nonlinear neural network first guess
employed in the AIRS v6 algorithm. NUCAPS continues to
use a linear regression for its first guess (similar to AIRS v5),
which simply cannot capture the same degree of variability in
fine vertical structure for the physical retrieval to “pivot” off

Fig. 11. Statistical assessment of offline NUCAPS AVTP v2.0.5 (CrIS full
resolution, red lines) and v1.5 (CrIS nominal resolution, blue lines)
versus collocated ECMWF model output (analysis or forecast nearest
in time) for retrievals accepted by the quality flag for a global focus day,
February 17, 2015. Global yields for v2.0.5 and v1.5 accepted cases are
83.4% and 63.5%, respectively, indicating a marked improvement in the
v2.0.5 acceptance rate. (Left) RMSE results. (Right) Bias ±1σ results.

of, thereby yielding greater null-space errors with respect to
high-resolution RAOBs.

V. PREPARATION FOR JPSS-1: CRIS FULL RESOLUTION

As mentioned in Section I, the operational SNPP NUCAPS
v1.5 runs on CrIS spectra at the original nominal spectral
resolution spectra of �ν ≈ 0.62, 1.25, and 2.5 cm−1 for the
longwave, midwave, and shortwave IR bands, respectively. The
reduced resolution in the midwave and shortwave bands is the
result of the interferograms being truncated in those bands
during operational processing of the SDRs. The reduction
in spectral resolution in these bands was not anticipated to
have a negative impact upon the primary temperature and
moisture profile EDRs, but it was known that there would be
adverse impact upon trace gases, especially carbon monoxide,
and this was later empirically demonstrated in [46]. Requests
for access to full-resolution CrIS (�ν ≈ 0.625 cm−1 in
all three bands) from EDR science teams eventually led to
offline production of full-spectral resolution (full-res) CrIS
SDRs beginning in December 2014 [47]. In preparation
for the ingest of operational full-res SDRs (including both
SNPP and JPSS-1, to be launched tentatively in Novem-
ber 2017), a preliminary experimental offline NUCAPS ver-
sion (v1.8.x) was developed to run on CrIS full-res data
for demonstration studies [46]. The finalized version rep-
resenting the operational delivery of the NUCAPS system
in full-res mode (July–August 2017) using the UMBC full-
res RTA has since been developed (v2.0.5) and has under-
gone testing for Provisional Maturity. CrIS full-res SDRs
were not operationally available during the dedicated/reference
RAOB acquisition period discussed in Section III, but the
full-resolution SDRs were processed for a global focus day,
February 17, 2015, for which global numerical ECMWF
model comparisons have been performed (per the first method
in the “validation hierarchy” referred to in Section III).
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Fig. 12. Statistical assessment of offline NUCAPS AVMP v2.0.5 (CrIS full
resolution, red lines) and v1.5 (CrIS nominal resolution, blue lines)
versus collocated ECMWF model output (analysis or forecast nearest
in time) for retrievals accepted by the quality flag for a global focus day,
February 17, 2015. Global yields for v2.0.5 and v1.5 accepted cases are
83.4% and 63.5%, respectively, indicating a marked improvement in the
v2.0.5 acceptance rate. (Left) RMSE results. (Right) Bias ±1σ results.

Figs. 11 and 12 correspondingly show the statistical profile
errors for AVTP and AVMP, respectively. These preliminary
results show that the retrievals are comparable to that obtained
using the operational v1.5 (nominal-resolution CrIS) and gen-
erally meet JPSS Level 1 requirements.

VI. CONCLUSION

This paper documents the formal validation of the
SNPP NUCAPS temperature and moisture profile
(AVTP and AVMP) EDRs based on a globally representative
sample of dedicated/reference RAOBs, where it has been
shown that the NUCAPS EDRs meet JPSS Level 1
global performance requirements and have thus reached
validated maturity. We note that the RAOB sites used in the
analyses include those from the three global zones (tropical,
midlatitude, and polar), as well as marine-based data sets
obtained from ship over both the Pacific and Atlantic Oceans
(i.e., AEROSE and CalWater/ACAPEX campaigns) under
a range of very different thermodynamic meteorological
conditions germane to users of sounder EDR (and SDR)
products. The NUCAPS mid-tropospheric temperature and
moisture show reasonable stability (seasonal variability of
AVTP and AVMP biases roughly within 0.5 K and 10%,
respectively, with no discernible interannual trends) over
the SNPP lifetime, and the algorithm has been successfully
implemented for future operational full-resolution CrIS data.
The NUCAPS version for CrIS full-res data (v2.0.5) has
undergone preliminary testing for Provisional Maturity and
operational delivery in July–August 2017. Validation of the
operational SNPP NUCAPS IR ozone profile product will be
the subject of a forthcoming companion paper.
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