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1 | INTRODUCTION

Satellite validation is a key to ensure that satellite products meet the mission-specified requirements for climate and
weather applications. Because the agreement of satellite measurements with ground-based reference measurements is
an essential quality indicator, one major issue in performing a rigorous validation is the quantification of the uncertainty
due to the co-location mismatch in time and space between satellite- and ground-based reference observations. This
mismatch is due to the different sampling of atmosphere carried out by the two instruments (Verhoelst et al., 2015),
which are also quite often based on very different sensing techniques and may be affected by bias and/or calibration
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error. Moreover, satellite- and ground-based observations are typically collected on very different time scales and spatial
scales. As a consequence, in a satellite versus ground measurements comparison, we may have horizontal, vertical, and/or
temporal mismatches in smoothing and/or profile resolution. These mismatches, together with comparator uncertainty,
contribute to the overall co-location mismatch uncertainty (hereinafter mismatch uncertainty).

Over the last decade, several authors have tried to estimate the impact of the satellite- versus ground-based mismatch
uncertainty of the essential climate variables (ECVs). The most common approach is to use simple descriptive statistics to
identify the maximum temporal and spatial distances, which warrant a controlled mismatch uncertainty; see, for example,
the work of Pappalardo et al. (2010) for aerosols and the work of Kursinski and Hajj (2001) for water vapor. Moreover,
considering vertical resolution, Pougatchev et al. (2009) found that, when available, the averaging kernels can be used to
reconcile the vertical resolution of satellite- and ground-based observations of temperature and humidity.

A rigorous metrological characterization of the mismatch uncertainty requires the quantification of the total uncer-
tainty budget for each satellite-retrieved ECV. Hence, the uncertainty budget includes the contribution of random
systematic sampling and smoothing uncertainties, and their correlation with all the relevant environmental factors.
Pioneering works in this direction are of Ridolfi et al. (2007) and Lambert and Vandenbussche (2011). More recently,
Verhoelst et al. (2015) have used an explicit physic simulation method for computing a full uncertainty budget closure
for ozone. Moreover, Fasso, Ignaccolo, Madonna, Demoz, and Franco-Villoria (2014) and Ignaccolo, Franco-Villoria, and
Fasso (2015) proposed an approach based on the extension of the classical functional regression model able to cover for
heteroskedasticity of mismatch error in temperature and humidity observation.

The GAIA-CLIM project (www.gaia-clim.eu) is a Horizon 2020 project that aims at improving the use of nonsatellite
measurements to characterize, calibrate and validate satellite measurements. Considering temperature and humidity, one
of its objectives is to understand the mismatch uncertainty in the comparison of the satellite observations obtained by the
infrared atmospheric sounding interferometer (IASI) instrument, on board EUMETSAT MetOp-A and MetOp-B, with the
radiosonde observations (RAOBs). In fact, RAOB profiles are appealing for satellite validation because of their extensive
spatial and temporal coverage, hence permitting the assessment of mismatch uncertainty at a global level. Despite this,
RAOB observations cannot be strictly considered reference measurements because they are not fully traceable and have a
limited vertical resolution; see the work of Dirksen et al. (2014). Note that the Global Climate Observing System Reference
Upper-Air Network (GRUAN, www.gruan.org) provides reference products, which are fully traceable but have a very
limited spatial coverage (16 sites as the paper is written).

Along these lines, this paper focuses on the vertical smoothing mismatch uncertainty of IASI-RAOB profile comparison
of temperature and humidity. This objective is achieved by a statistical technique for vertical harmonization, which is
independent of the availability of IASI averaging kernels, hence especially relevant for comparisons where averaging
kernels are not available, in particular for historical data analysis. To do this, the vertical data-point sparseness of a RAOB
network is assessed by means of a comparisons with GRUAN reference products where available.

The proposed technique is a two-step technique. At the first step, RAOB profiles are transformed into continuous func-
tions using splines, which are optimized to match as close as possible to GRUAN profiles. In doing this, vertical sparseness
uncertainty and processing mismatch uncertainty are assessed. At the second step, RAOB profiles are harmonized by
considering weighting functions based on the generalized extreme value (GEV) probability density function (pdf) whose
parameters depend on the IASI levels.

The paper is structured as follows. In Section 2, data from both satellite (IAST) and radiosonde (GRUAN and RAOB)
are introduced. In Section 3, the various sources of uncertainty arising in satellite-ground comparisons are reviewed.
Sections 4 and 5 discuss novel statistical modeling: The former section leverages on intuition, whereas the latter embeds
the same model in a rigorous maximum likelihood estimation approach. Section 6 applies this approach to IASI-RAOB
comparison for a number of RAOB stations in Central Europe. To do this, in Section 6, the RAOB soundings are trans-
formed into functional data and harmonized to match IASI vertical smoothing. Then, the sparseness uncertainty of RAOB
and vertical smoothing uncertainty of IASI-RAOB comparison are computed. Section 7 gives concluding remarks.

2 | DATA SETS

The data sets used in this study include atmospheric profile retrievals derived from an TASI instrument and from con-
ventional (RAOB) and reference (GRUAN) radiosonde networks. The RAOB-TASI co-location data set, which is provided
by NOAA-NESDIS, has been collected through the NOAA Products Validation System (NPROVS); see Sun et al. (2017)
(http://www.star.-nesdis.noaa.gov/smcd/opdb/nprovs/). The NPROVS data set used in this study includes K = 3,908
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FIGURE1 Spatial distribution of RAOB stations in Central Europe. Circles are VAISALA RS92 launching stations, and diamonds are

non-VAISALA stations. The star denotes the GRUAN-RAOB station in Lindenberg. GRUAN = Global Climate Observing System Reference
Upper-Air Network; RAOB = radiosonde observation

co-located profiles at 21 RAOB stations selected across the Central European area (C-EU), described in Figure 1, for the
period January 2015 to February 2016.

Each co-location pair includes RAOB and IASI profiles for temperature and water-vapor mixing ratio (WVMR) with
RAOB at mandatory and significant levels and IASI at 100 levels. In order to consider profiles with enough data, the
data set has been filtered as follows: Temperature (WVMR) has been restricted to atmospheric range 958.6 — 10 hPa
(958.6 — 300 hPa), and only co-locations with at least 20 (14) RAOB measurements have been selected for the analysis,
giving K = 1, 596 (2648) co-locations out of the original K = 3,908 NPROVS co-locations. Notice that the atmospheric
range considered after filtering is still relevant for climate and weather studies as pressure levels 10 hPa and 300 hPa,
corresponding to around 40 km and 10 km, respectively.

In addition, the GRUAN station at Lindenberg has been used as a reference for radio-sounding measurements to under-
stand conventional RAOB sparseness uncertainty. In fact, this GRUAN station is also a conventional RAOB station and,
although the instrument is physically the same for both, data are processed in a different manner, giving different mea-
surements. Because the difference between GRUAN and RAOB measurements depends only on the processing, we claim
that the RAOB sparseness uncertainty is representative of the whole geographic area considered in this paper, provided
that measurements are taken using Vaisala RS92 instruments. As a result, for temperature (WVMR) we have Kz = 306
(396) GRUAN-RAOB co-locations.

Other meteorological variables considered in statistical modeling of the mismatch error, such as wind, solar radiation or
geopotential, have been taken from the ERA-Interim global atmospheric reanalysis implemented by the European Centre
for Medium-Range Weather Forecasts (ECMWF); see the work of Berrisford et al. (2009).

2.1 | TASI

Products retrieved from EUMETSAT's IASI instruments aboard of MetOp-A and MetOp-B satellites considered in this
study are based on version 6 of the EUMETSAT IASI level-2 processor. The IASI is a Fourier transform spectrometer based
on the Michelson interferometer, associated with an integrated imaging system (Blumstein et al., 2004).

The IASI atmospheric profiles of temperature (WVMR) are available at 74 (32) pressure levels in the range 958.6—10 hPa
(958.6 — 300 hPa). Considering vertical smoothing, the IASI sounding products represent thermodynamic states of deep
atmospheric layers at variable depths, due to the integrating nature of the radiation measurements at the top of the atmo-
sphere. The maximum number of independent pieces of information is approximately 14 (10) for temperature (humidity)
profiles, the exact number depending on atmospheric conditions. Hence, the true vertical resolution is considerably lower
than the vertical grid of 74 (32) pressure levels discussed above, and profiles retrieved from such radiance measurements
are smoothed versions, where the smoothing functions are given by the so-called averaging kernels. Although version 6 of
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the TASI level-2 processor provides the information to calculate the averaging kernels, it has not been used in this paper,
being unavailable in the NPROVS data set.

2.2 | Conventional RAOB

Conventional RAOBs have been used historically as a de facto standard data set in satellite calibration (via radiative
transfer models) and validation. Worldwide, there are more than 2,000 radiosonde launch sites and mobile ship-based
launch stations.

While a radiosonde transmits an essentially continuous stream of temperature and humidity information back to
the station (each 5-10 m of altitude, measured each 1-2 s), for temperature (WVMR), a RAOB data set includes only
15 (6) “mandatory levels” in the atmospheric range 958.6 - 10 hPa (958.6 — 300 hPa). Moreover, data are given at various
“significant levels,” which are the pressure levels where a significant change or an extreme is identified in the vertical
temperature and/or dewpoint temperature profiles. For this reason, the ECV variation between two such significant lev-
els is often assumed close to linear. In practice, altitude and number of significant levels change among different profiles
and, on average, 28 significant levels per profile are available in the RAOBs collected at NPROVS, the exact numbers
depending on specific atmospheric conditions.

Considering sensor type, it is worth mentioning that, for the area considered, the RAOB stations are mainly based on
Vaisala RS92 sondes, with two remarkable exceptions: SRS sondes in Switzerland and MODEM sondes in France (see
Figure 1).

2.3 | GRUAN

Conventional RAOBs may not be able to provide reference-quality in situ and ground-based remote sensing observa-
tions of upper-air ECVs for metrological and traceability reasons; see the works of Seidel, Sun, Pettey, and Reale (2011),
Immler et al. (2010), and Bojinski et al. (2014). Improving on this, GRUAN data processing was developed to meet the cri-
teria for reference measurements (Dirksen et al., 2014). As a result, GRUAN radio-sounding profiles are provided together
with individual measurement uncertainty estimates at high vertical/temporal resolution: Measurements are obtained at
1-2 s or 5-10 m in altitude; this temporal resolution is then reduced to about 10 s during processing by a low-pass filter to
avoid temperature spikes. GRUAN quality has been extensively assessed (see, e.g., Calbet et al., 2017). Because the Lin-
denberg GRUAN station is also a conventional RAOB station, it is important to remark here that, considering this station,
the two profiles differ for the vertical resolution and for data processing. In fact, the former is obtained using the GRUAN
processing algorithm whereas the latter is obtained using the algorithm implemented in Vaisala RS92 instruments. As a
result, the two products give noncoinciding measurements.

3 1| CO-LOCATION MISMATCH SOURCES

As discussed above, the comparison of radiosonde and IASI profiles aims at understanding which factors contribute to
the discrepancies observed between a satellite vertical profile and a comparator profile. Although ideally, the comparator
should be an error-free “true” state, in practice, its uncertainty is worth to be considered.

In fact, a meaningful comparison should take into account the spatio-temporal mismatch between profiles; the different
vertical smoothing and resolution of the two instruments/data sets; the different horizontal smoothing and resolution
of the two instruments; and the comparator uncertainty, in particular radiosonde instruments issues, including solar
radiation, dry-bias when measuring humidity, ventilation effects, ground calibration effects, and all the other problems
detailed in the work of Dirksen et al. (2014).

The following subsections briefly discuss the former points justifying a focus on vertical smoothing uncertainty based
on data harmonization.

3.1 | Satellite smoothing

As discussed in Section 2, radiosonde and IASI are based on completely different measurement techniques. While the
radiosonde is able to make a “direct” measurement of the ECV at the position in space and time reached by the weather
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balloon, IASI sounds the atmosphere using an interferometry technique. This implies that the vertical resolution of IASI
is much lower than the resolution characterizing a radiosonde. Any comparison between radiosonde and IASI profiles,
thus, may be affected by these differences.

Note that different methods are available in satellite product validation to resolve the issue in vertical resolution dif-
ference. One requires to apply satellite sounder averaging kernels to the target data, for example, radiosonde data, and
then to compare with the retrievals (Maddy & Barnet, 2008); one is to first average a vertical layer for both satellite
and target data profiles and, then, to compute the validation statistics at those “coarse” vertical layers (Sun et al., 2017;
Tobin et al., 2006). In this study, we choose to employ the vertical harmonization technique for the uncertainty assessment
(see Section 4).

Considering horizontal smoothing, note that IASI samples a limited atmospheric cone, with a footprint of about 12 km.
Hence, the co-location mismatch due to the variability of the atmosphere within the portion of the atmosphere sampled
may be assumed small when considering the total co-location uncertainty and negligible considering the effect on vertical
smoothing uncertainty following the considerations of Section 3.4 below.

3.2 | Spatio-temporal mismatch

Radiosonde and IASI profiles are characterized by a spatio-temporal mismatch. For the data set considered, only
co-locations with horizontal distances up to 300 km at surface and time delays up to three hours have been considered;
see the work of Kursinski and Hajj (2001). This is because weather balloon launches are not perfectly synchronized with
the satellite overpasses, and overpasses may be far from the station where the radiosonde is launched, both in space and
time. Additionally, the IASI profile is retrieved nearly instantly. On the other side, according to Seidel et al. (2011), weather
balloons take on average 1.7 hr from the surface up to 10 hPa and typically shift up to 50 km in the lower stratosphere,
although there is considerable variability due to variability in climatological winds.

Although relevant, the effect of the spatio-temporal mismatch is not explicitly studied in this paper. In fact, this was
done in the work of Fasso, Verhoelst, and Lambert (2018) where, applying a isotonic bivariate regression model to the
harmonized RAOB data, the increase in uncertainty with respect to horizontal distance and time mismatch is assessed
using a harmonization approach similar to this paper. For the current paper, one can see that ignoring this effect inflates
the total uncertainty estimates. On the other side, the effect on a vertical smoothing uncertainty estimate is limited and
discussed below in Section 3.4 and in the case study.

3.3 | Comparator uncertainty and vertical sparseness

It has been seen that RAOB data are at subreference level and are provided at the so-called mandatory and significant
pressure levels, which are sparse vertically. The latter being given at pressure levels where some interesting variation is
happening. This entails that data occur according to a preferential sampling design (Diggle, Menezes, & Su, 2010), which
is dependent on second-order derivatives.

As a consequence, before developing an IASI comparison, the estimation of the “true” profile at any pressure level,
based on RAOB data, requires a statistical assessment. In this frame, (vertical) sparseness uncertainty is the uncertainty
component related to the coarse vertical resolution.

In addition, the comparator uncertainty is inflated by instrument issues. These include solar radiation, dry bias when
measuring humidity, instrument time lag, ventilation effects, processing algorithm version, and ground calibration effects.
We do not enter in technical details here, but refer to the work of Dirksen et al. (2014). Instead, we mention here that
a total sensor/processing bias will be considered in this paper. Nonetheless, because this bias will be estimated using a
GRUAN-RAOB comparison at Lindeberg station, it will depend on sonde type and will be not generalizable to all RAOB
networks. For this reason, the total uncertainty of the comparisons will include this component.

3.4 | Discussion

Ideally, a full metrological budget would include and quantify all above uncertainty components. Although this objective
overwhelms this paper for reasons of data availability and paper length, some of the related issues are considered in other
papers as discussed above. Along these lines, it is clear that the above mismatch sources may inflate the total uncertainty



60f17 Wl LEY FINAZZI ET AL.

of the JASI-RAOB comparison. Despite of this, we will see that the effect of the above sources on vertical smoothing
uncertainty is minor, and it is neglectable under error incorrelation assumptions.

4 | STATISTICAL HARMONIZATION AND UNCERTAINTIES

Vertical harmonization refers to a data transformation, which reduces the differences in the vertical smoothing between
the two profiles and improves the radiosonde and IASI profiles’ comparability. In our case, the low vertical resolution of
IAST implies that IASI retrievals are much smoother than radiosonde data. Because we cannot unsmoothen IASI profiles,
the radiosonde profiles are smoothened in order to mimic the IASI retrievals.

This is achieved by the convolution of the radiosonde profile s(p) of temperature and humidity with a normalized
weighting function w( p; p’) in the observed pressure P range defined in Section 2. Namely,

5(p) = / s(@)w(q; p)dq €}
Py

with /Pkw(q;p)dq =1

The “true” profile may be assumed a continuous function of pressure, but RAOB profiles are observed only at a limited
number of “preferential” levels. To handle this, a two-step procedure is proposed. The first step, developed in Section 4.2,
extends the idea of Fasso et al. (2014) to represent atmospheric profiles as functional data (Ramsay & Silverman, 2012)
with a smoothness coefficient obtained by minimizing the difference with the reference GRUAN data. The second step,
described in Sections 4.3 and 4.4, optimizes the weighting function w.

4.1 | Data and likelihood function

Let us consider a collection of K co-located RAOB-IASI profiles observed across the geographic area and time frame of
interest, with a subset of these K co-locations, for example, {1, ... , K}, obtained at the Lindenberg station, and having
GRUAN profile counterparts.

For each given co-location k = 1, ... ,K, let x;;x be the radiosonde data vector related to pressure levels p;x =
(Prkis ---sPrkn,,), WithJ = R for RAOBorJ = G for GRUAN, and Njx be the number of pressure levels for co-location
k. Moreover, let x1 be the IASI data vector related to pressure levels p; = (py;, ... , Pry), With M as the number of IASI
pressure levels. Note that the RAOB pressure levels depend on co-location k. Instead, IASI pressure levels are invariant
among co-locations with M = 74 (32) for temperature (WVMR). As a consequence, RAOB and IASI pressure levels are
different and vertical matching may represent an issue. On the contrary, the number of GRUAN measurements Ng  is
very high for all profiles so that, for any prefixed RAOB level in py ., a very close GRUAN pressure level in p;, may be
found.

4.2 | RAOB estimation and sparseness uncertainty

The discrepancies between conventional RAOB and GRUAN may be used to understand the loss of information of RAOB
due to its sparse vertical resolution. In fact, the minimization of this loss can be used to define an optimal estimate of the
unobserved true signal.

To see this, the true signal of the kth profile is considered as a smooth function denoted by sz( D), and it is related to
observation xjx(p) for p € p;andJ = R, G,I by the following conditions:

X7, (P) = S7.(P) + €5k(D), (2
where €5,(p) is Gaussian distributed, N(0, szk( D)), and
scx(p) = 5(P)

srk(P) = sp(P) + A(D) 3)

si(p) = / sp(@w(g; p)dg. )
PR



FINAZZI ET AL. Wl LEY 70f17

These three conditions will be discussed in detail later. For the moment, note that A(p) is a smooth bias, constant
over co-locations, and w is a weighting function. Moreover, note that, for GRUAN, the squared measurement uncertainty
ué( p) = E(xg(p) — s°(p))? is known at all pressure levels p € p; and ué = aé. For RAOB, the measurement uncertainty
u = oy + A? is not widely available, but there is some evidence that 0122’/.( p) pdé’j (p) for some p > 1. For simplicity, we
assume that p does not depend on pressure level p or on co-location k.

In this paper, we estimate the smooth profile sg( p) by Sz(p, 4), which is a penalized spline with smoothing factor A. The
estimated profile Sz(p; 4) is computed on RAOB data by solving the following penalized weighted least square problem:

Nri Ngy 5 2
Srk(p; A) = arg msin Z(xR,k(pj) - s(pj))zaR,k(p) + /12 <%S(pj)> aR,k(p)] , (5)
j=1 Jj=1
where
Kg
ari(p) = aci(p) = Uuci(p) 2/ D uck(p)™ (6)
k=1

. . . 1
for co-locations in Lindeberg and ag = N elsewhere.
Rk

Following, for example, the work of Reinsch (1971), and using one knot per observation, the solution §g x of equation (5)
may be expressed in terms of tolerance = = 7(4), which is the upper limit of the weighted root mean square error along
the RAOB profile

1 A
— Y xra(p) = 3(p. M ara(p) < 72, @
Nek pép,

where, clearly, 7 = 0 gives interpolating splines. For this reason, depending on the context, we will use either r or 4 to
address smoothing properties of spline Sz x(p, 1) = Srk(p, 7).

Using GRUAN-RAOB comparison at Lindenberg, we estimate the bias A by the weighted GRUAN-RAOB average
difference, namely,

Ko
A(p.1) =) (8(p: 7) — XGx(P)) acui(p)- ()
k=1
Next, the smoothing factor A(r) is obtained by optimizing the adjusted GRUAN-RAOB difference. In other words, 7 is the
solution of the following weighted least squares criterion:

£ = arngin Z z [xc(p) = (3=(p; 7) — A(p; T))]ZaG,k(P), )

where «a; is defined in Equation (6).

Due to the peculiarity of the RAOB sampling points discussed in Section 2.2, three spline models are compared in
Section 6: linear and cubic smoothing Bsplines and Hermite interpolating splines (Hsplines). The former two are well
known, and we only remark here that the smoothing coefficient 7z is not obtained by a cross-validation or generalized
cross-validation criterion on RAOB data as in standard smoothing splines. Instead, 7 is numerically optimized according
to the GRUAN agreement criterion (9), which takes into account measurement uncertainty. Interpolating Hsplines are
also known as piecewise cubic Hermite interpolating polynomials, being cubic monotonic splines with continuous first
derivatives; see the work of Fritsch and Carlson (1980). Hence, Hsplines are introduced here as an intermediate solution
between cubic and linear Bsplines. In fact, in this model selection problem, one could use also smoothing Hsplines; this
approach being further discussed in the case study.

After obtaining %, the optimized quantity in Equation (9) provides the total mismatch uncertainty profile of
GRUAN-RAOB comparison, namely,

Kg
N 12
WD) = ) [Xak(P) = 3k(p; )] “aci(p), (10)
k=1
which is the loss of information due to sparseness and difference in data processing. More comments and the decompo-
sition of Equation (10) in sparseness and processing uncertainty will be developed in the case study.
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4.3 | Vertical smoothing

With the aim of making radiosonde and IASI profiles comparable, the radiosonde profile of the previous section denoted
in the sequel by Sz(p) = Sz(p; 7) is smoothed by means of a weighted integral, namely,

Sr(p;0) = / Sr(@w(g; 6, p)dg. (11
Py

In Equation (11), the weight function w(q; 6, p) is a nonnegative and normalized weight function, depending on p and
a parameter vector & = 6(p), which has to be estimated. Because the role of w is to mimic the IASI sounding of the
atmosphere, Fasso et al. (2018) considered the following alternative functions: rectangular, sine, Gaussian, and GEV dis-
tribution. As expected, the latter was found to outperform the other simpler competitors and, for this reason, it is used
here. In particular, the GEV pdf has parameter vector (u, ¢, £), which are the location, scale and shape parameters, respec-
tively; see the work of Kotz and Nadarajah (2000). In this paper, we use level-dependent parameters, namely, u(p) = p
and 6(p) = (a(p),&(p))-

In order to compute the harmonized RAOB § from Equation (11), we need to estimate € and a natural choice is the

following penalized weighted least squares iterated for j = 1, ... ,M:
K
A s . . 2 ; A
8; = B(p)) = argmin | " [x1i(p) = Sealp;: O)] o () +1(J > DO = Bl | . (12)
k=1

where p; € p; and the weight a7 is the normalized squared reciprocal measurement uncertainty of IASI, analogous to
formula (6). Moreover, ||x|ls = x'X7'x, where X; is a variance covariance matrix to be discussed in the next section and
I(j > 1) = 1ifj > 1 and = 0 else. Note that the penalty term in (12) is related to smoothness of the atmosphere and,
hence, of 6( p) with respect to p.

4.4 | Vertical smoothing uncertainty

A byproduct of the data harmonization procedure above described is the uncertainty component related to the vertical
smoothing. In particular, the RAOB-IASI mismatch uncertainty due to difference in vertical smoothing is given by

u2RI.vsmooth(p) = quI.raw(p) - quI.harm(p)’ (13)

where Ugy harm( p) is the vertically harmonized mismatch uncertainty, that is,

K
U1 harm (P) = Z [t (p: 6(p)) — xI,k(P)]Zaz,k(p), (14)
k=1

and ugy raw( p) is the raw mismatch uncertainty in the comparison of IASI with nonharmonized RAOB sg( p), namely,

K
o (P) = 5 3 PP = SiP)] (P
k=1

Hence, uil.vsmooth(pj N

Notice that, in Equation (11), one could use the adjusted RAOB $g — A, instead of $g. We prefer to use 3g, because, as
mentioned in Section 2.2, the RAOB network is heterogeneous, and the bias A is valid only for Vaisala RS92 sondes. It
follows that the uncertainties of this section are valid for the entire RAOB network considered and include the uncer-
tainty related to sensor heterogeneity. More generally, considering the various mismatch sources of Section 3, the total
uncertainty quLraw(p) is inflated by the smooth components of these mismatches not filtered by the spline transform 8g .
Moreover, note that the vertical smoothing uncertainty in Equation (13), being defined by a difference of two uncertain-
ties, is approximately independent from all the additive uncertainty components, that is, it is not affected by the other

co-location mismatch sources assuming incorrelated errors.

) may be interpreted as the (squared) mismatch uncertainty improved by the data harmonization.
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5 | LIKELTHOOD INFERENCE

The modeling machinery of the previous section has a rigorous interpretation as a maximum likelihood estimation
problem for a nonlinear mixed-effect model. This is properly described using three main steps for RAOB, GRUAN and
IASI, respectively.

5.1 | RAOB likelihood

The first step is to represent the RAOB true signal by the following linear representation:

Sr(p) = B(P) v, (15)

where B is the vector of Bspline basis functions and yy is the vector of the spline coefficients. Using this, Equation (2) for
the kth RAOB profile may be rewritten as follows:

Xrk(p) = B(P) ¥y + €r k(D)

where p € pR’k,k =1,...,K
Stacking Xz k(p1), ..., Xrk(Pn,,) in a vector, for example, Xz x, all B’sin a matrix Zg x and all errors in a vector &, we have
the following matrix representation:

Xrk = ZRkYRK T ERK-

This has a well-known mixed-effects model interpretation (see, e.g., Fahrmeir, Kneib, Lang, & Marx, 2013). To see this,
let [y] denote the probability distribution of the random vector y and assume that [yy ] = N(0, Gx), where Gy = A2
A > 01is a known smoothing factor; and I is the identity k — dim matrix. Then, the penalized least square criterion in
Equation (5) corresponds to the maximum likelihood estimate (MLE). In fact, apart for an additive constant, we have

=2logly ][ Xrklvi] = I¥illc, + 1 Xrk — ZrAYl5, -
Stacking all Xz in a vector Xg, and similarly for Z, y, and €, we have the following matrix representation:
Xgr =Zgry +€r
and

—2loglylIXgly] = llvllc + Xk — ZrYllx,
K

=) (lrelle, + 1Xrk — Zrivills, ) -
k=1

where Xy is diagonal matrix corresponding to uncertainties in Equation (6). Because this likelihood is optimized by mini-
mizing each summand independently, the computation burden is linear in K and the solution is the MLE §(z) as a function
of 7 (or A).

Hence, Equation (5) may be rewritten as

Srj(p; 7) = B(p) 7r(7).
Notice that the RAOB data model for Xz may be partitioned as

)(R1 _ )’R1 ER,
= () = e (52) < (22)
2 2 2

where R; is the GRUAN matching data set corresponding to co-locations k = 1, ... ,Kg, and R; is the remaining major
part of the RAOB data set with K — K soundings.

5.2 | GRUAN-RAOB likelihood
Now, considering GRUAN and RAOB matching data in R;, we have the following representation:

xg(p) = sc(p) + ec(p)
sc(p) = sr(p) + A(p),
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where A is a GRUAN-RAORB fixed effect bias. Hence, in matrix notation, we may write
Xc =ZR1}'+A+£G

and

—2log [Xo|Xg,. x| = ||XG —ZGYr, — AHZ :

G
If we compute this at 7(z), we have a profile log-likelihood I(z, A|7(r)), which is easily optimized for A(z) and, finally, for
(z]A(z), 7(z)). We then have the MLE triplet for the IASI and RAOB data sets as follows:
7.4.2),

which is given by Equations (5), (8), and (9).

5.3 | TASI-RAOB likelihood

The IASI observation equation is obtained by substituting Equations (3), (15), and (4) in Equation (2). This gives
x1k(P;) = Z14(pj. 0))yi — A(p;. 0)) + €1, (16)
where Z;(p,0) = [, w(q; 0, p)Bri(q)'dg and A(p,6) = [, w(g; 6. p)A(@)dg.
Hence, the stacked IASI observation equation for the jth pressure level and all co-locations may be written as
Xr; =Z1,0))y — AO)) + €1,

and the full data set is represented by X; = Z;(®)y — A(®) + g7, where ©® = (64, ... ,0y).

Now, in order to estimate ©, one could consider independent estimates for 8; separately. However, this assumption
contrasts with atmospheric considerations and tends to overfit. On the opposite side, one could assume 0( p) is a smooth
function of p and use Bspline. This would largely increase the number of parameters to be simultaneously optimized,
resulting in an unfeasible algorithm. An intermediate and suitable solution is to assume that 6 is a vector random walk,
namely,

9, =0j_1+§j, (17)
forj = 2, ... ,M. In the equation above, 0 ; is an unknown parameter and the innovations ¢ ; are Gaussian distributed
N(0, Z;) with X, a diagonal matrix.

It follows that the profile likelihood for y = 7, A = A and known X, and ¥; is given by

- M -
—2log[¢. Xily. Xr Xc] = || Z1.1(60)y — A(91)||21 + Zj:z <||9j - 9;—1||>;€ + 121,68,y - A(ej)”21> , (18)
which is optimized by the M nonlinear optimizations

0, = arg mgin | Z11(0)y - A(el)“z,

éj = éj—l + argmgin <||C||2[ + ||ZI,j(éj—1 +Qy - A(éj)”}: > (19)
T

forj = 2, ... ,M, which correspond to minimizations in Equation (12). Note that the diagonal matrix X; is given by the
uncertainties in Equation (12), which are assumed to be known up to an acceptable approximation.

6 | CASE STUDY

In this section, the two-step harmonization procedure presented in Section 4 is applied to the RAOB-IASI data set
introduced in Section 2, independently for temperature and WVMR co-locations.

6.1 | RAOB estimation

The first step is the transformation of the sparse RAOB radiosonde profiles into continuous functions to be used in the
convolution of the second step. To do this, spline type and smoothing level have been chosen according to the GRUAN
closeness criterion of Equation (9). Considering linear Bsplines, smoothing optimization is shown in Figures 2 and 3,
giving © = 0.4 K and © = 0.075 g/kg for temperature and humidity, respectively. Table 1 shows that linear Bsplines with
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FIGURE 2 Temperature. Smoothing optimization of RAOB linear Bsplines with respect to GRUAN data in Lindenberg. (Abscissa)
tolerance 7, given by Equation (7). (Ordinate) GRUAN-RAOB weighted root mean square error (wrmse). GRUAN = Global Climate
Observing System Reference Upper-Air Network; RAOB = radiosonde observation

usar WYMR GRUAN-RAOE Smoothing optimization: 957.47-300.22 hPa
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FIGURE 3 Water-vapor mixing ratio (WVMR). Smoothing optimization of radiosonde observation (RAOB) linear Bsplines with respect to
Global Climate Observing System Reference Upper-Air Network (GRUAN) data in Lindenberg. (Abscissa) tolerance 7, given by Equation (7).
(Ordinate) GRUAN-RAOB weighted root mean square error (wrmse)

GRUAN-optimal smoothing improve over both cubic Bsplines and interpolating Hsplines. This is consistent with the
preferential sampling design characterizing RAOB significant levels mentioned in Section 4.2.

6.2 | Sparseness and processing uncertainty

The comparison of RAOB and GRUAN data in the Lindenberg station provides the GRUAN-RAOB total mismatch uncer-
tainty, which is computed using the approach of Section 4.2. In particular, in Figures 4 and 5, urg.r of Equation (10)
shows a peculiar behavior with local minima at mandatory levels. In fact, as discussed in Section 2, both RAOB and
GRUAN are observed at these pressure levels, whereas between them, RAOB is observed only at significant levels. The red
line interpolates between the above mentioned minima and defines the mismatch due to the difference between GRUAN
data processing (Dirksen et al., 2014) and Vaisala RS92 data processing, denoted by ugg proc. As a result, the black dashed
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TABLE1 Comparison of linear and cubic Bsplines
and interpolating Hermite splines (Hsplines) of
temperature (K) and humidity (g/kg), based on the
weighted root mean square error of GRUAN-RAOB
in Lindenberg

Temperature WVMR

Linear Bsplines 0.4897 0.0346
Cubic Bsplines 0.7706 0.0712
Interpolating Hsplines  0.6085 0.0379

Note. WVMR = water-vapor mixing ratio; GRUAN = Global
Climate Observing System Reference Upper-Air Network;
RAOB = radiosonde observation.

decomposition: 957- 10 hPa

temp GRUAN-RADB uncertaint

[hPa]

FIGURE 4 Temperature. GRUAN-RAOB mismatch uncertainties. The solid blue line is the total mismatch uncertainty (ugg (o), the solid
red line is the uncertainty due to the difference between Vaisala and GRUAN processing (Urg proc), and the dashed black line is the RAOB

sparseness uncertainty (U sparse = 1 /ufmt ot quG' pro .)- GRUAN = Global Climate Observing System Reference Upper-Air Network;
RAOB = radiosonde observation

line of Figures 4 and 5 is the sparseness uncertainty adjusted for mismatch in processing and is given by the quadratic
difference among the previous uncertainties, namely,

2 — 142 2
UR sparse = YRG.tot ~ URG.proc
Considering temperature, the processing uncertainty is close to 0.1 K until 300 hPa. In this range, also sparseness uncer-
tainty is generally smaller than 0.35 K. In the upper atmosphere, both uncertainties are larger consistently with solar
radiation bias. Considering WVMR, as expected, the vertical pattern is reversed with a processing uncertainty decreasing
from 0.1 g/kg at ground level to 0.02 g/kg at 300 hPa. In this range, the sparseness uncertainty is smaller than 0.3 g/kg.

6.3 | Harmonization and vertical smoothing

Conventional RAOB profiles are harmonized thanks to the optimization in Equation (19). This is solved for each IASI
pressure level p; € p; iteratively from the top pressure level p; = 11 hPa (300 hPa) and going down to p,, = 957 hPa
separately for temperature and WVMR. We also tried to iterate in the opposite order, from ground to upper air, obtaining
very close results. At each pressure level, the optimization is solved numerically. Because it is reasonable to assume that
nearby pressure levels are characterized by a similar 0, the initial value for ¢ is set to zero for allj = 1, ... , M. To avoid
local minima, the optimization for 6, is repeated 100 times with randomly perturbed initial values and 8; is taken as the
optimum of these 100 solutions. The diagonal variance covariance matrix X, which acts as a smoothing factor has been
obtained by a preliminary not regularized estimation run.
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WVMR GRUAN-RADB uncertainty decomposition: 957- 300 hPa

Total G-R Uncariainty
— Processing Uncertainty
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FIGURE 5 Water-vapor mixing ratio (WVMR). GRUAN-RAOB mismatch uncertainties. The solid blue line is the total mismatch
uncertainty (Ugg.iot), the solid red line is the uncertainty due to the difference between Vaisala and GRUAN processing (4gg.proc), and the

dashed black line is the RAOB sparseness uncertainty (U sparse = quG'tot —u? ). GRUAN = Global Climate Observing System Reference

RG.proc
Upper-Air Network; RAOB = radiosonde observation

Temperature - GEV weights
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FIGURE 6 Temperature. Weight functions given by generalized extreme value (GEV) probability density functions for infrared
atmospheric sounding interferometer pressure levels

In order to illustrate the results, Figures 6 and 7 show GEV pdfs w(., 6}, p;) related to IASI pressure levels p;, ... ,py
for temperature and WVMR. Each function essentially mimics how IASI sounds the atmosphere at each specific pressure
level with a peak near the corresponding IASI level. The smaller the function width at pressure level p;, the better the
IASI retrieval describes the ECV at that level.

Note that, in Figure 6, the weighting functions show two peaks present near the atmospheric boundary layer (ABL;
about 800 hPa) and the tropopause (about 300 hPa). In particular, the asymmetric shape of the weighting functions around
the ABL clearly shows the smoothing properties of the IASI product, which is consistent with the atmosphere dynamics
around the ABL. Moreover, note that the weighting function dispersion decreases at upper altitudes, implying an apparent
decrease of smoothing, especially above 50 hPa. This is mainly due to the nonlinearity of the pressure scale. For instance,
a pressure difference of 10 hPa at 20 hPa corresponds to an altitude difference of around 4 km, whereas the same pressure
difference at 1,000 hPa corresponds to an altitude difference of only 0.08 km. Moreover, in Figure 7 weight functions near
300 hPa are clearly affected by a border effect and should be interpreted with caution.
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FIGURE 7 Generalized extreme values (WVMR). Weight functions given by generalized extreme value (GEV) probability density
functions for infrared atmospheric sounding interferometer pressure levels
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FIGURE 8 Temperature. (Black dotted line) vertical smoothing uncertainty, ugyysmooth, iS the uncertainty due to the difference in
smoothing between radiosonde observation (RAOB) and infrared atmospheric sounding interferometer (IASI). The profile average is 0.501 K.
(Cyan dashed line) harmonized mismatch uncertainty, ugyharm, is the uncertainty due to the mismatch after adjusting for difference in
vertical smoothing. The profile average is 1.052 K. (Red solid line) unadjusted uncertainty, ug; raw, is the total uncertainty between
interpolated RAOB and IASI. The profile average is 1.553 K. The formulas are given in Section 4.4

After harmonizing RAOB to IASI, the adjusted uncertainty of Equation (14) is computed and the related vertical
smoothing uncertainty decomposition of Equation (13) is reported in Figures 8 and 9. The IASI-RAOB comparison is
dominated by the smoothness of the IASI retrieval and its reduced capability to catch strong vertical gradients with respect
to the RAOB profiles, though their sparseness. In the boundary layer (BL) below about 900 hPa, where significant inver-
sion in the temperature profiles may occur, the harmonization does not strongly reduce the raw uncertainty, but above,
up to 700 hPa, the reduction becomes more significant. In the upper troposphere/lower stratosphere, the strong gradients
at the tropopause increase the raw uncertainty and the harmonization strongly reduces the difference between IASI and
RAOB. It is worth to remind that the values calculated above 100 hPa are affected by the size of the sampling, which is
more limited that at higher pressure levels. For WVMR, results similar to temperature are observed in the BL. The increase
of the smoothness uncertainty at 800 hPa is likely linked to the transition from wetter to drier air occurring at the top of
BL not always caught in the RAOB data. The benefit of the harmonization decreases with the altitude proportionally with
the decrease of the water vapor variability in the atmosphere. This is clearly visible from the difference between the raw
and harmonized uncertainties, which reduces with the height.
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FIGURE 9 Water-vapor mixing ratio (WVMR). (Black dotted line) vertical smoothing uncertainty, ugyysmootn iS the uncertainty due to the
difference in smoothing between radiosonde observation (RAOB) and infrared atmospheric sounding interferometer (IASI). The profile
average is 0.1632 g/kg. (Cyan dashed line) harmonized mismatch uncertainty, ugyparm, is the uncertainty due to the mismatch after adjusting
for the difference in vertical smoothing. The profile average is 0.4833 g/kg. (Red solid line) unadjusted uncertainty, u,, is the raw
uncertainty between the interpolated RAOB and IASI. The profile average is 0.6465 g/kg. The formulas are given in Section 4.4

7 | DISCUSSION AND CONCLUSION

This paper discussed the comparison of IASI and RAOB temperature and humidity with a focus on vertical smoothing.
Because the IASI averaging kernels have been considered unknown, a weighting function mimicking the weights of the
averaging kernel has been estimated on data. The behavior of the estimated weighting functions has been found to be
consistent with atmospheric dynamics around both the tropopause and the ABL. In order to do this, RAOB data have
been transformed into functional data and the related uncertainty has been assessed by a comparison with the reference
measurements for radiosonde given by GRUAN data, Lindenberg. Hence, it can be considered as a first substantial step in
the direction of Calbet et al. (2017), “to fully characterize the comparison, a method to estimate the collocation uncertainty
would be desirable. This method should not depend on the data being used for the study and should be independent
from them.”

Thanks to this approach, it has been found that the uncertainty of vertical smoothing mismatch averaged along the
profile is 0.50 K for temperature and 0.16 g/kg for WVMR. Although some uncertainty components have not been taken
into account, the vertical smoothing uncertainty is correct under incorrelation assumption. Moreover, the uncertainty
related to RAOB vertical sparseness, averaged along the profile, is 0.29 K for temperature and 0.13 g/kg for WVMR. Notice
that, because RAOB data are obtained mainly but not exclusively by Vaisala RS92 sondes, vertical sparseness uncertainty
assessment is valid for the Central European area but should be used with some cautions for SRS and MODEM sondes. On
the other side, the vertical smoothing uncertainty embeds the RAOB heterogeneity and, hence, is valid for the entire area.

From the methodological point of view, it has been shown that the estimates are obtained by the maximum likelihood
method, taking into consideration also the measurement uncertainties where available.

7.1 | Further developments

Further aspects may be added to the present analysis of satellite versus radiosonde comparison. For instance, the distance
between the satellite line of sight and the radiosonde position has not been considered. In fact, this issue will be addressed
in a forthcoming paper using isotonic regression (Meyer, 2013).

Vertical correlation has not been considered explicitly here and, in this sense, the results could be suboptimal. In fact,
IASI measurements are known to have a limited number of degrees of freedom. In our approach, at least a part of IASI
vertical correlation is implicitly handled by the random walk dynamics of GEV pdf parameters in Section 5.3. Considering
radiosonde, sources of vertical correlation arise both from short-range smoothing algorithms, used to avoid measurement
outliers, and by prelaunch calibration errors. Although a good part of these problems is automatically handled by the
functional data approach used here, further research could point out new solutions.
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A further insight into vertical smoothing could benefit from the comparison of this proposal with the IASI “true aver-
aging kernel” at least in some cases. Nonetheless, we remark that the approach of this paper can be used even in absence
of averaging kernels, which is quite relevant especially for historical records.
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