Measurements of Temperature, Water Vapor, Clouds, and Winds Derived from Ground-Based Remote Sensors

James Liljegren ARM Climate Research Facility Instrument Coordinator Argonne National Laboratory

Reference Upper Air Observations for the Global Climate Observing System: Potential Technologies and Networks Applied Physics Lab, University of Washington, Seattle 22-24 May 2006

> Atmospheric Radiation Measurement Climate Research Facility U.S. Department of Energy

Office of Science U.S. Department of Energy

Contributors

- Wayne Feltz, Univ. of Wisc. (AERI)
- Maria Cadeddu, ANL (Microwave Radiometers)
- Suzanne Crewell, Univ. of Cologne (Microwave Radiometers)
- Ed Westwater, Univ. of Colorado (Microwave Radiometers)
- Diana Petty, PNNL (Raman Lidar)
- Zhien Wang, Univ. of Wyoming (Raman Lidar)
- Vic Morris, PNNL (Sky Imagers)
- David Turner, Univ. of Wisc. (Raman Lidar, LWP w/AERI+MWR)
- Richard Coulter, ANL (Wind Profiling Radar, Sodar)
- Ric Cederwall, BNL (Constrained Variational Analysis)
- Laurel Chapman, ANL (Operational Cost)

Overview

- Temperature and Water Vapor
 - Passive Microwave and Infrared Sensors
 - Active (Lidar, Radio-Acoustic) Sensors
- Clouds
 - Passive (microwave, IR, optical) for LWP; Sky Imagers
 - Active (Lidar, Radar) for base height, thickness, LWC/IWC)
- Winds
 - Radar, Sodar for vector profiles
- Capabilities of Individual Remote Sensors
- Complementary Aspects (vis-à-vis each other, soundings)
- Advantages of Combining Sensors

Passive Remote Sensing

- Continuous profiling to supplement 1-2/day radiosondes
- Temporal and vertical resolution trade-off
- Elevated inversions and moisture gradients difficult to resolve
- Multi-angle retrievals, combined sensor retrievals
- Retrieval algorithm methodologies
- Effect of weather conditions
- Reliability, autonomy, calibration \rightarrow operating cost

AERIs at SGP Site

Spectral Regions used in AERI Retrieval

Courtesy of Wayne Feltz

Comparison with Radiosondes

Passive Infrared (AERI)

- Wavelength/frequency: 3300-520 cm⁻¹, 3-20 μm; 1.0 cm⁻¹ resolution
- Vertical Range: 0-3 km (clear sky) or to cloud base height
- Vertical Reporting Interval: 5 mb (~50 m) from surface to 900 mb, 20 mb (~200 m) 900-600 mb, 50 mb above 600 mb (RUC)
- Vertical Resolution: varies with height
- Temporal Resolution: 6-10 minutes; upgraded ARM systems will be 20 seconds
- Accuracy: < 1 K for temperature; 5% for water vapor mixing ratio compared with radiosondes (radiance accuracy < 0.1% ambient blackbody radiance)
- Accuracy constraints: spectroscopy (bias spectrum), first guess/a priori information
- Precision: ~1 K RMS for temperature; varies with height for water vapor mixing ratio
- Calibration: two blackbody references (50° C, ambient); no LN₂ required
- Weather constraints: no measurements during precipitation (hatch closed), cloudy sky limitations on retrievals
- Shelter requirements: shelter with roof port/hatch; controlled environment for electronics
- Initial cost: \$250,000 (Univ. of Wisc/SSEC)
- Operating cost: \$100,000/year (interferometer, stirling cooler, cryogenic dewar)

ARM Site at Barrow, Alaska

MWRP: 5 channels 22-30 GHz, 7 channels, 50-60 GHz

GVR: 4 channels, 183.31±1, ±3, ±7, ±14 GHz MWR: 2 channels at 23.8 and 31.4 GHz New: 90 and 150 GHz (summer 2006)

Q

Measurement Channels

Temperature Combined with GOES

Water Vapor Combined with GOES

Comparison with Radiosonde

Comparison with Radiosonde

Multi-Angle Results

Combined MWRP and GVR

Courtesy of Maria Cadeddu

Humidity and Temperature Profiler (HATPRO)

- Design based on BBC results
- suitable for LWP & IWV as well as humidity & (boundary layer) temperature profile
- rain sensor, GPS, clock
- environmental humidity, pressure and temperature

Radiometer Physics GmbH, Meckenheim

Courtesy of Susanne Crewell

Comparison with Tower, Radiosonde

SCANNING O2 60 GHz Radiometer (pictured here for ocean deployment) Developed by V. Leuski (NOAA) and V. Kadygrov (ATTEX) Now sold commercially by Kipp&Zonen

Center Frequency Band Width Sensitivity @ 1 s Beam Width Scan Rate

60 GHz 4 GHz 0.02 K 6.5 deg 0.55 Hz

PRODUCTS Air-Sea Temperature Diff. T Profile to 500 m

0.1K rms 0.5 K rms

FIELD CAMPAIGNS JUSREX 1992 COPE 1995 BAO 1997 SGP 1996 NAURU 1999 NSA 1999

Courtesy of Ed Westwater

(A) A 10-day time series of temperature at 200 m as measured by the ATTEX radiometer, by the in situ measurement on the tower, and by a Radio Acoustic Sounding System (RASS). January 1–10, 1997.

(B) A 6-day time series of temperature at 200 m as measured by the ETL radiometer and by the in situ measurement on the tower. December 21–27, 1996.

After Westwater et al., JAOT, 16(7), 805-818, 1999

Courtesy of Ed Westwater

5-day time series of air temperature profile retrieved from 10 min averaged scanning microwave upward looking scan; Barrow, Alaska, 1999. Julian day 85 is 03/26/1999. After Racette et al., JAOT, Vol. 22, No. 4, pp. 317 - 337, April 2005.

Passive Microwave

- Wavelength/frequency: 22-31 GHz (water vapor), 50-60 GHz (temperature)
- Vertical Range: 0-10 km
- Vertical Reporting Interval: 100 m (sfc to 1 km), 250 m (1-10 km)
- Vertical Resolution: varies with height
- Temporal Resolution: 5 minutes
- Accuracy: < 1 K bias for temperature; < 0.5 g/kg bias for water vapor mixing ratio compared with radiosondes (T_B accuracy ~0.5 K in K-band, 1 K in V-band)
- Accuracy constraints: spectroscopy, calibration
- Precision: ~1-3 K RMS for temperature; varies with height for water vapor mixing ratio
- Precision constraints: dwell time, cycle time
- Calibration: one blackbody reference (ambient); periodic LN₂ calibration required
- Weather constraints: no valid water vapor measurements during precipitation
- Shelter requirements: no shelter needed; controlled environment for computer
- Initial cost: \$175,000 (RPG HATPRO), \$250,000 (Radiometrics TP/WVP-3000)
- Operating cost: \$9,000/year (MWRP+MWR: tunable synthesizer, gunn diode oscillators, circuit boards (age, lightning, blizzard), polycarbonate foam radomes)

Active Remote Sensing: Raman lidar

Transmits laser pulse of energy λ_0

Atmospheric Radiation

Climate Research Facility

U.S. Department of Energy

- Detects backscattered energy at λ_0 and the wavelengths associated with Raman shifts of molecules of interest as a function of range
- Ratios of various channels provide desired parameters
- Derives profiles of water vapor, aerosol, depolarization, liquid/ice water content and temperature
- Derives integrated products precipitable water vapor and aerosol optical thickness
- Designed for continuous, autonomous (24/7) operation
- Has been operational since 1998 (~50-60% uptime)
- Data available via ftp from ARM (http://www.arm.gov)

23

Courtesy of Diana Petty

Raman Lidar Water Vapor Mixing Ratio

Raman Lidar Temperature Profiles

Raman Lidar Temperature Profiles

Raman Lidar

- Wavelength/frequency: 355 nm (outgoing)
- Maximum Height: 4-5 km (day), 15 km (night)
- Vertical Resolution: 37.5 m @ sfc to 300 m @ 8 km (7.5 m possible)
- Temporal Resolution: 10 minutes (10 sec possible)
- Accuracy: ~5% for water vapor mixing ratio (compared with radiosondes)
- Accuracy constraints: calibration
- Precision: depends on vertical, temporal averaging time
- Precision constraints: vertical, temporal averaging (SNR)
- Calibration: mixing ratio: PWV from MWR
- Weather constraints: signal significantly attenuated by clouds, rain
- Shelter requirements: controlled environment required for optics and electronics
- Initial cost: ~\$1M
- Operating cost: \$50,000/year (flash lamps, THG crystals, laser cladding, pockel cell)

Cloud Properties

Cloud Base Height

- Ceilometer (e.g. Vaisala CT25, CL31, LD40)
- Micro-Pulse Lidar
- Radar (35 GHz, 95 GHz)
- Cloud Amount (% Cover)
 - Visible and Infrared Imagers
- Cloud Liquid Water Path
 - Microwave radiometer (23.8/31.4, 90/150 GHz)

Infrared/visible measurements for thin clouds

Lidars: Cloud Base Height

	Ceilometer (CT25)	5) Micro-Pulse Lidar	
Wavelength	905 nm	532 nm	
Vertical Range	7.5 km	~25 km	
Vertical Resolution	15 m	15, 30, 75 m	
Temporal Resolution	15-120 s	selectable	
Accuracy			
Accuracy Constraints	CBH algorithm	CBH algorithm	
Precision			
Precision Constraints	Averaging time	Averaging time, vert. res.	
Calibration	N/A	N/A	
Weather Constraints	Affected by precipitation	Affected by precipitation	
Shelter Requirements	none	20-25°C, view port to sky	
Initial Cost	\$40,000	\$125,000 (w/polarization)	
Atmospheric Operating Cost Measurement	<\$5,000/year (transceiver repair, fiber optic couplers)	\$65,000/year (laser diod power supply)	

U.S. Department of Energy

Climate Research Facili U.S. Department of Energy

Micro-Pulse Lidar

- Backscatter at 30 m resolution, ~25 km range
- Cloud boundaries
- Aerosol extinction profiles (VAP in development)
- SGP, TWP(3), NSA, AMF

ARM Cloud Radars

Images courtesy of Kevin Widener

Sky Imagers

Total Sky Imager

- Daytime Operation Only
 - Real-time imagery
 - Panoramic and hemispheric
 - Cloud cover fraction
 - SGP, TWP (3), NSA, AMF
 - Cost: \$25K

images

Images courtesy of Vic Morris

Sky Images at SGP with sun covered by clouds

IRSI

10/19/2005 15:31:39

10/19/2005 15:31:30

Images courtesy of Vic Morris

Sky Images at SGP with sun exposed

10/19/2005 16:00:09

10/19/2005 16:00:00

Images courtesy of Vic Morris

Liquid Water Path

- MWR: 23.8, 31.4 GHz
 - Accuracy: 20-40 g/m² RMS
- GVR: 183.3±1, 3, 7, 14 GHz
 - Accuracy: 6 g/m² RMS

Courtesy of Dave Turner

Radar Wind Profilers Radio-Acoustic Sounding Systems

• 915 MHz

50 MHz

Wind Profilers

	915 MHz	404/449 MHz	50 MHz	Sodar (1, 5 kHz)	
Minimium Height	100 m	500 m	2000 m	50 , 5-10 m	
Maximum Height	3.3-4.6 km (50%)	8-18 km (nom)	12 km (50%)	0.8-1.2 km	
Max Height Constraint	Antenna size, output power, humidity, atmospheric stability				
Vertical Resolution	300-600 m	320-900 m	60-100 m	50, 5-10 m	
Temporal Resolution	30-60 min consensus averages			5-6 min	
Accuracy	0.5 m/s	0.5 m/s	0.5 m/s	0.5 m/s	
Accuracy Constraints	Sampling volume (vertical resolution), length of FFT (spectral resolution)				
Precision	0.5 m/s	0.5 m/s	0.5 m/s	0.5 m/s	
Precision Constraints	SNR: sampling volume, interference (ground clutter, birds, precip.)				
Weather Constraints	Sensitive to rain, snow	Large rain drops, hail	Insensitive to precip.	Sensitive to rain, snow	
Shelter Requirements	Electronics and computers require controlled environment				
Radiation Measurement	\$250,000- \$370,000	?	?	\$70,000 -700	
mate Research Facility .S. Department of Energy	\$14,000/year		\$10,000/year	Office of Scient U.S. Department of Ener	

CI

Constrained Variational Analysis

- Zhang and Lin (1997), Zhang et al. (2001)
 - Conserve mass, moisture, static energy, and momentum
- To provide inputs for SCMs, CRMs
 - Large-scale state variables (P, T, q, u, v)
 - Large-scale vertical velocity
 - Advective tendencies of state variables
- Input Measurements
 - State variables: P, T, q (radiosondes, RUC model), u, v (RWPs)
 - LWP (MWRs)

Department of Energy

- Rainfall (ARBRFC radar product)
- Surface met, radiation, sensible/latent heat fluxes

TOA radiation, clouds (GOES/Minnis)

Niamey, Niger

