Upper Air Observations from a NOAA Perspective

NOAA/GCOS WORKSHOP
To Define Climate Requirements
for Upper-Air Observations

Thomas R. Karl
Director, National Climatic Data Center
Program Lead, NOAA Climate Observations and Analysis

Climate Requirements Will Be Integrated Into a Broader Framework

✓ NOAA Mission Goals

- > Climate
 - Observations and Analysis
 - Climate Forcings
 - Climate Predictions & Projections
 - Ecosystems
 - Regional Integrated Science Applications (RISA)
- Weather and Water (W&W)
 - Local Forecasts and Warnings
 - Air Quality
 - Environmental Modeling

Climate Requirements Will Be Integrated Into a Broader Framework

- ✓ NOAA Mission Goals (cont'd)
 - Commerce and Transportation (C&T)
 - **Aviation Weather**
 - Surface (land & marine) Weather
 - Organizational Excellence, Infrastructure, & Support Goal
 - Satellite Services Sub-goal
 - Homeland Security Sub-goal

Related Issues to Consider in **Developing Requirements**

✓ NOAA Cross-Cutting Priorities

> Integrating Global Environmental Observations and Data Management

✓ NOAA Integrated Observing System (IOS)

- ➤ Integrated Upper Air Observing System (IUOS)
- ➤ Integrated Surface Observing system (ISOS)
- ➤ Integrated Ocean Observing system (IOOS)
- ➤ Integrated Joint Satellite Observing Systems

National Networks of Observing Systems Federal, State, Local, Govt., University/Research, and Private Sector

Linkages to NOAA's Strategic Plan

✓ Corporate Decision Support:

- > IUOS will support the Air Quality particulate matter forecast
- ➤ NOAA Profiler Network (NPN) transition plan a component of IUOS
- In addition to G-IV and P-3 instrumentation upgrades, unmanned aerial vehicle (UAV) sensors will supplement IUOS adaptive observing system
- IUOS capabilities support the C&T Emergency Response program
- CT water vapor sensor installation will be a key component of IUOS

Requirements Will Be Vetted Through NOAA PPBES

FY07 NOAA Annual Guidance Memo

- ✓ Already disposed --- major items
 - Taking the Pulse of the Planet Integrated Global Observations
 - Advance NOAA's Modeling Capability
 - ➤ Increase Climate Information, Services, and Products
 - ➤ Support the U.S. Transportation Systems
- √ Enablers
 - Maintain and Provide Necessary Platforms

FY08 NOAA AGM *Spring 2005*

Interagency & International Linkages

✓ U. S. Global Climate Observing System (GCOS)

- ➤ Implementation Plan for the Global system for Climate in Support of UNFCCC, October 2004
- ➤ The Second Report on the Adequacy of the Global Observing Systems for Climate in support of the UNFCCC, April 2003
- ✓ Global Earth Observations System (GEOS)
 - > 10 Year Blue Print: Global Earth Observing System of Systems (GEOSS)
 - > IWGEO Strategic Plan for the U.S. Integrated Earth Observation System
- ✓ Climate Change Science Program (CCSP) Strategic Plan

Other Related Documents

- ✓ Strategic Direction for NOAA's Integrated Global Environmental Observation and Data Management
- ✓ NOAA Observing Systems Investment Strategies for FY 07 Preliminary, October 2004 (Restricted until Feb. 2006)

Upper Air Framework Within GEOSS

- ✓ Requirements must be validated
 - Why is it important to measure R.H. to within 1% at -40°C?
 - Why measure temperature trends to within 0.1°C/century?
- ✓ Requirements most effective when linked to specific benefits

Current Status:

- ✓ GCOS Global Upper Air Network
- ✓ Unable to confidently determine multi-decadal changes, e.g.
 - Moisture --- especially upper troposphere not well measured
 - ➤ Temperature --- Too many uncertain adjustments required (CCSP draft: *Temperature Trends in the Lower Atmosphere* Assessment Report 1.1)

Minimizing Time Dependent Biases dependent upon:

- ✓ Maintenance and Calibration
- ✓ Data Management System
 - NOAA Administrative Order --- All new observing systems must include a Data Management System
 - Metadata
 - Observing System Performance Monitoring
 - Near-real time Climate Monitoring
 - Analysis System

✓ Cost Effectiveness

- Optimizing investment strategy
- Requirements (broadly considered beyond climate) and benefits (quantified, e.g., economic)
- Overall Cost

Important Issues for Consideration:

- ✓ Reporting frequency (number per day or month)
- ✓ GCOS GUAN sites being upgraded to operational status
- ✓ Tiered System including a Reference Network?
- ✓ Multiple Uses, e.g.,
 - How will climate integrate with weather observing system?
 - How will sonde data compliment satellite retrievals?

Variables to measure

- ✓ Use of Reanalysis can help address requirements for:
 - Accuracy
 - > Precision
 - Vertical resolution
 - Spatial Resolution
 - Temporal Sampling
 - Introduction of New Instruments (Overlap issues)

New Technology

- ✓ How to integrate Satellite Spatial Coverage and Increasing Vertical Resolution?
- ✓ Must look to NPOESS in the time frame we are discussing
- ✓ GPS (temp and humidity)

Communications

- ✓ Satellite vs. land lines
 - Confidence intervals depend on time, space, scale of interest

THE END

Data Management+

Collection

Internet, private networks, satellite, physical transfer

Ingest/management

Collect/create/maintain metadata Catalog and inventory

Quality control

Basic – detect missing data, value limits, comparison with neighbors Advanced statistical– detect discontinuities, determine biases Assimilation – comparison with model output Observing and communication systems performance monitoring

Retrospective analysis

Aggregation in time and space Statistical analysis (means and extremes)

Data filtering (filter high frequency noise)

Determine trends

Monitor climate indicators

Access

Interactive on-line, near-line Via customer services

Data Transport

On-line, Internet Media Data Products

Preservation/Archive

Reformat Storage Backup

Overarching the above are interoperable systems, effective user feedback and standards

OBSERVATIONS GOES SPACE Sounder **GOES** Winds **POES** ATOVS, **ATMOSPHERE** AMSU-A, AMSU-B, **HIRS NPOESS** Aircraft CMIS, CrIS, **SURFACE** ATMS, **APS** Radiosonde network **METOP Experimental Profiling** HIRS, radar AMSU, **GPS** MHS, IASI occultation Aqua **NEXRAD** AIRS, radial AMSU winds

Observing and Data System Deficiencies

✓ Six
different
adjustment
schemes
used to
identify
timedependent
biases

Adapted from: Free et al (2002)

Chuuk/Truk (91334) Metadata Example

YYYY MM DD	EVENT	FROM	то
1986 99 99	USING SONDE MODEL	VIZ (Generic)	
1988 10 01	CHANGE SONDE MODEL	VIZ (Generic)	toVIZ B
1990 07 99	CHANGE COMPUTER	MINI-ART 2 SYSTEM	PtoMICRO-ART SYSTEM
1993 10 99	CHANGE RH ALGORITHM	DEW PT=30 FOR RH<20%	toNO CUTOFFS
1993 10 99	CHANGE DATA CUTOFF	MISC. ALGORITHM	toCORRECTED ALGORITHM
1993 10 99	CHANGE GRAVITY VAL.	9.8 M/S2	to9.80665 M/S2
1993 10 99	CHANGE RH ALGORITHM	RH MISSING FOR T<-40	tono cutoffs
1995 12 01	CHANGE SONDE MODEL	VIZ B	toVAISALA RS80-56
1999 02 01	CHANGE COMPUTER	MicroART(v.generic)	toMicroART(v.2.97)

- 99 = UNKNOWN DATE
- ✓ Metadata records recently updated for approx. 65 GUAN stations as part of NCDC GCOS Lead Centre responsibilities

Cost Effectiveness

2001 GUAN Station Sounding Completeness (at least one mandatory level reported) 00 & 12 UTC

Percent of Possible Soundings

- 0.00
- 0.01 to 49.99
- 50.00 to 89.99
- 90.00 to 100.00

2004 GUAN Station Sounding Completeness (at least one mandatory level reported) 00 & 12 UTC

Percent of Possible Soundings

- 0.00
- 0.01 to 49.99
- 50.00 to 89.99
- 90.00 to 100.00

Monitoring / Health of the Networks / Global In Situ Options / GUAN Options

GCOS Upper Air Network Station Graphs

91334 - TRUK/CAROLINE IS., PS.

Date Range: 195706 to 200412

Hour: 00

Level: 50

(9999 = Surface; 0 = Tropopause)

Temperature - Pre QC

■ Temperature - Pre QC

