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Motivation 
• Get the ‘Right answer’ for the ‘Right reasons’ 
• Climate variability (all scales) 
• Climate Changes 
• Understanding Key Processes 
• Representing Feedbacks (processes interacting) 
My Biases:  
• Global models & big (climate) picture  
• Upper/Free Troposphere critical 



Outline 
• Examples from NCAR CAM3  
• Key Processes & Parameterizations 
• Testing with observations 
• Confidence in observations 
• Future Requirements 



Key Global Model Processes 
• NCAR/CAM Architecture 

– ‘State of the Art’ General Circulation Model 
– Can be coupled (Ocean, Land, Sea Ice) 
– Deep ocean to lower thermosphere 
– Chemistry, Aerosols, Biogeochemistry, etc 

• Focus on Condensation/Microphysics 
– Hydrologic Cycle 
– Climate Feedbacks (UTH, Clouds) 
– Aerosol radiative effects and Clouds 

• Measurement issues cut across processes 



CAM3 microphysics 
• Bulk condensation scheme conserves H2O 
• Condense, Advect, Evaporate, Sediment 
• Cloud/Condensate Particle Size = f(T) 
• Cloud Fraction = f(RH)  [Sundquist, Slingo] 
• Clouds not affected by aerosol scheme (yet) 
• Radiation is dependent on clouds (overlap) 



Key Science Questions to Test 
• What are key biases in the model? 

– Tropopause, Double ITCZ 
• How does UTH vary and change?  

– H2O feedbacks 
• How do we handle supersaturation (ice)? 
• Aerosol impacts on cloud particles  

– Aerosol indirect effects? 
• How do process interactions affect model biases? 



Observational Requirements 
• Need validated data: either in-situ or remote 

– Need to know error characteristics 
• Process studies 

– Detailed in-situ data, off line testing 
– Column models, box models & trajectories 
– Multiple scale models (cloud resolving, mesoscale) 

• Derived quantities and effects 
– Remotely sensed (cloud particles, radiation) 
– Mean & Variability (many scales) 



How do we test Parameterizations? 
1. Climatology (mean) 
2. Monthly, Seasonal, Interannual Variability 
3. High Frequency Variability 
4. Data Assimilation 
 
Focus: RH, Cloud particle sizes, Transport 
Also: Chemistry, Radiation 



The Mean: AIRS v. CAM3 RH 

CAM CldFrac < 0.7 CAM CldFrac < 0.4 



Variability: ENSO 
DJF H2O (Q)  

 Observations (MLS)      Model (observed SSTs)  



High Frequency: The Tropopause 
Can we reproduce all scales of variability? 

GPS Data: DJF 1996-7 
(Randel et al 2003, Fig 4) 

WACCM2: Jan-Feb 

±10K 



Daily Subtropical 200hPa RH 
 



CAM Tropical 192hPa RH 
 



Forecasting to Evaluate Models 
 

Phillips et al, BAMS, 2004 

Double ITCZ 



Data Assimilation 
Assimilation - Forecast after 6 hours 

 
 
 
 
 
 
 
 
 
 
 

Where assimilation affects model: compare to cloud obs 



Derived Quantities: Particle Size 
Variation of Effective Radius (re) v. Temperature 

 
 

Data: Garrett 2003, GRL, Figure 1 
  

CAM3 

In Situ Data 



Derived Quantities: Particle Size  (2) 
Variation of Effective Radius (re) v. Temperature 

MODIS gets basic shape, but strong peak @~30um 
 <-- Garrett 2003, GRL, Figure 1 

 MODIS (L2 subset), Jan 30, 2004 
 \/ 



Transport & Chemistry 
 3 Transport Schemes for ‘Ozone’ in CAM3 
 
 
 
 
 
 
 
AIRS O3 
(March 2004) 
 
 

Rasch et al, in Prep 



Climate & Transport 
Biogenic CO2 transport: 

1 model, 3 transport 
schemes & diurnal cycle 
spans range of variability 
from TransCom 
intercomparison 

Rasch et al, in Prep 



Specifics (1): T & H2O 
• H2O ± 20% single precision, <5% average 

This is : 1-10ppmv in UT/LS 
Daily necessary, probably will need 2-4 x daily soon 

• T ± 0.25K UT/LS, 0.5K elsewhere 
2x Daily, probably 4x daily (forecasts), more (GW) 

• RH ± 5% (sampling as for H2O) 
This means: 5-10ppmv H2O UT, 0.5 ppmv LS,  
T ± 0.25K at tropopause, 0.5K UT 

• Long term (decadal +) changes:   
RH< 2% H2O <5%  T<0.2K 



Long Term UTH trends 
HIRS/TOVS trends 
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T & Q: Possible from Space 
AIRS v. MOZAIC (in situ Aircraft) T & H2O 
 
 
 
 
 
 
 

Need more validation! 



Specifics (2): Clouds, Rad, Chem 
• Cloud Optical Properties, LWP/IWC: settle for 

the right variations, ±50%. Sub-daily sampling  
– Assimilation will be key  

• Radiation: Spectrally resolved (aerosol 
extinction) & broadband 
– H2O continuum at low T & P important for climate 

• Key Chemical Constituents: H2O, O3, CO, NOx 
– 10%, daily, global. Diurnal cycles eventually 
– This is possible to do from space! 



Upper Air Chemistry from Space 
700mb March 2003 O3  
O3 (AIRS)    

 
 
 
 
 
 
 
Need the right sensors, retrievals, validation 



Where we are going 
• Atmospheric Models are more demanding now 

– Increased complexity 
• Asking tougher questions  

– aerosols, particle sizes, feedbacks, chemistry 
• Techniques more advanced 

– Assimilation => need for error analysis 
– BETTER validation critical for testing models 

• Questions will get tougher 
– hourly resolution for global process studies 
– More derived and interlinked quantities 
 
 



Recommendations 
• Validation of Climate Products critical 

– Need uncertainties (for Data Assimilation) 
– Don’t cut calibration (especially radiation) 
– Need in-situ validation (balloons, aircraft) 

• Need a ground based Reference Network 
– Clouds, Wind (remote), T, H2O, O3 

• NPOESS is losing its climate mission 
– Almost there with EOS clouds, chemistry 
– NPOESS may be repeating past mistakes 
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