

NOAA Environmental Observation Requirements Collection

February 9, 2005 NOAA IUAOS/Climate Workshop I

Pamela Taylor, NOAA Observation Requirements

Overview

- Background of:
 - NOSC: NOAA Observing System Council
 - NOSA: NOAA Observing System Architecture
 - CORL: NOAA Consolidated Obs Req List
- CORL Requirements Collection Process/Status
- CORL and IUAOS/Climate

Background - NOSC

Why

- May 2002: NOAA Program Review Team Recommendation #32
 - Develop a NOAA Observing Systems Architecture (NOSA) to assess current capabilities and identify short-term actions
 - Base prospective observing systems on *validated requirements*, consistent with a target architecture, and address data utilization and archive
 - to transition requirements identification from *stove-piped*, *technology-driven*, *platform-oriented* to *integrated*, *user needs-driven*, *mission-oriented*
 - Conduct a systemic review of all other observing systems
- NOAA Strategic Plan
 - Develop integrated global environmental observation and data management system

Background: NEC Decisions

- Establish Observing Systems Council
- Establish NOAA Observing Systems Architect
- Matrix managed within NESDIS
- Implement observing systems architecture toolset across NOAA
- Document baseline NOAA Observing Systems Architecture (NOSA)
- Develop target (10-20 years) NOSA

NOAA Observing Systems Council (NOSC)

- Principal advisory body to the Under Secretary for NOAA's Earth observation and data management (end-to-end) activities
- Principal coordinating body to White House Committee on Environment and Natural Resources (CENR) Subcommittee on Earth Observations
- Membership
 - Co-Chaired by AA NESDIS and AA NWS
 - AA representatives from each Line Office and appropriate Program leads

NOSC (cont'd)

Function

- Reviews observing system requirements
- Analyzes architecture alternatives and risks
- Recommends acquisition of appropriate observing systems to meet NOAA, national, and international architecture requirements
- Coordinates NOAA's participation in national and international earth observation efforts
- Provides corporate oversight of NOAA Observing Systems Architect (NOSA)

Further Benefits to NOAA

- Provides integrated view of NOAA's observing systems linked to mission requirements
- Provide framework for future requirements & costs
- Reveal how changes in funding levels for one system will impact many others
- Reveals gaps and duplication
- Results in more cost-effective overall observation system
- Facilitates accessibility to all NOAA observations by all NOAA customers
- Facilitate partnering at all levels
- Identify opportunities for migration of research to operations

Overview

NOSA -Observing System Architecture Relationship Diagram

Requirements Gap Analysis leading to a Target Architecture

Observing System Gaps in SST Requirement

Observational Requirement	User	Priorit y	Thr esh old/	Covera ge	Horizo ntal Resolut	Horizontal Resolution	Mapping Accuracy Units		Measurement Range Units	Measuremen t Range - Low	Measurement Range - High	Measurement Accuracy Units	Measurement Accuracy	Sampling Interval
Sea Surface Temps: Hemispheric	NWS/NC EP/OPC	1	Thre shol	Hemisp heric	kilomet ers	2	kilometers (km)	0.5	degrees Kelvin (K)	271	313	degrees Kelvin (K)	1	60
Sea Surface Temps: Hemispheric	NWS/NC EP/OPC	1	Obj ecti	Hemisp heric	kilomet ers	.5	kilometers (km)	.2	degrees Kelvin (K)	271	313	degrees Kelvin (K)	1	15
NESDIS-DMSP-Sea Surface Temperature					0.55 km	0.55 km	OLS: 3.7-9.3 km	OLS: 3.7-9.3 km	%RH	190	310	+/- 2	+/- 2	12
NESDIS-GOES I/M-Sea Surface Temperature					6 km	6 km	2 km	2 km	cm-3	273	308	0.6 K	0.6 K	1
NESDIS-GOES NOP-Sea Surface Temperature					6 km	6 km	2 km	2 km	degrees Kelvin (K)	273	308	0.6 K	0.6 K	1
NESDIS-NPOESS-Sea Surface Temperature									cm-3					
NESDIS-POES-SST				Global	1-100 km	1-100 km	Mapping accuracy is 1–6 km, although the necessary threshold is 1.3	Mapping accuracy is 1–6 km, although the necessary threshold is 1.3	Degrees Celsius	- 2 degree Celsius (typically)	40 degree Celsius (typically)	within 0.5 degrees C	within 0.5 degrees C	Every 6 Hours
NMFS-CREWS-SST_							uniesnoid is 1.3	Intestiola is 1.3	Degrees Celsius	-5	35	.002	.002	1
NMFS-CREWS-Water Temperature									Degrees Celsius	-5	35	.002	.002	
NOS-NWLON-WATER TEMPERATURE									Degrees Celsius	-5 Deg. C	+40 Deg. C	+/- 0.2 Deg. C	+/- 0.2 Deg. C	hourly
NOS-PORTS-WATER TEMPERATURE									Degrees Celsius	-5 Deg. C	+40 Deg. C	+/- 0.2 Deg. C	+/- 0.2 Deg. C	hourly
NOS-SWMP-WATER TEMPERATURE									Degrees Celsius	-5	45	+/- 0.15 C	+/- 0.15 C	30
NWS-BOY-Sea surface temperature									Degrees Celsius	-5	40	+/- 1	+/- 1	60
NWS-MAN-Sea surface temperature									Degrees Celsius	-5	40	+/- 1	+/- 1	60
OAR - Stratus - Subsurface - Sea Surface Temp									Degrees Celsius	-5	35	0.002 - 0.005	0.002 - 0.005	varies from 5 to 120 minutes
OAR - Stratus - Subsurface - Water Temperature									Degrees Celsius	varies by sensor	varies by sensor	varies by sensor	varies by sensor	varies from 5 to 120
OAR-AOML-GOOS-SVP-SST									Degrees Celsius	-2	+42	+/- 0.3	+/- 0.3	Every 3 hours
OAR-AOML-GOOS-Sub Surface Temperature				Global	4 to 24 observat ions/da v	4 to 24 observations/d ay	By using GPS we realize a location accuracy of + or	+ or - 20 meters.	Degrees Celsius	-2	+40	0.15	0.15	10
OAR-Argo-Ocean Temperature Profile									Degrees Celsius	-5	35	.001	.001	10
OAR-TAO-OceanTemp									Degrees Celsius	0	40	0.01	0.01	10

Notional Portfolio Analysis Result

NOSA Near Term Tasks

- Therefore, first step in developing NOSA, is to identify and document all NOAA Observational Requirements
 - Develop a more formal NOAA Observation Requirements Collection Process
 - Produce a NOAA Consolidated Observation Requirements List (CORL) database
- Provide PR08 efficiency and investment recommendations
 - Objective: Provide NOAA Leadership with information to assist in building a NOAA-wide portfolio of observing system investments
 - Optimal portfolio: the combination of observing system investments that provides the greatest value within a given budget (recognizes legal mandates and other drivers)
- Goal: Develop repeatable process to support 15
 '08 PPBES cycle and beyond

CORL: Background

Scope

- Initial focus on supporting a NOAA-wide observing system architecture (for 4 NOAA Goal Teams/31 NOAA Programs) that allows central planning, system integration
- Plan to be part of an integrated global environmental observation and data management system

- How

7-Step Process: From Observation Requirements Identification,
 Translation and Standardization through Validation and Annual
 Updating

Observational Requirements Collection Process Description – 7 Steps

- 1. Identification and Collection current documentation
- 2. Translation and Standardization MORL/GCMD
- 3. Revision and Prioritization by program
- 4. Validation by parameter, attribute, approval levels
- 5. Consolidation all MORLs to CORL
- 6. Interfaces with NOSA and PPBES
- 7. Maintaining Currency annual Review of Req, Jan-Feb prior to NOAA PPBES cycle

Requirements Process - Past

Characteristics

- Limited NOAA-wide requirements collection
- Requirements are system-, not agency-, based
- No formal translation of requirements to product processing, distribution, archive and assimilation

Requirements Identification to Systems Allocation

19

NOAA Mission Goal Teams

Ecosystem Goal

Habitat Corals

Coastal and Marine Resources

Protected Species

Fisheries Management

Aquaculture

Enforcement

Ecosystem Research

Ecosystem Observations (9)

Weather and Water Goal

Local Forecasts and Warnings

Space Weather

Hydrology

Air Quality

Environmental Modeling

Science, Technology, and Infusion

Coasts, Estuaries and Oceans

Climate Goal

Climate Observations & Analysis (3)

- Atmosphere
- Ocean
- Land

Climate Forcing

Climate Predictions & Projections

Climate & Ecosystems

Regional Decision Support

Commerce and Transportation Goal

Marine Transportation Systems

Aviation Weather

Marine Weather

Geodesy

NOAA Emergency Response

Commercial and Remote

Sensing Licensing

Surface Weather

Programs with observational requirements are in red italics (x) = number of SubPrograms

Observational Requirements Collection Process Description – 7 Steps

- 1. Identification and Collection current documentation
- 2. Translation and Standardization MORL/GCMD
- 3. Revision and Prioritization by program
- 4. Validation by parameter, attribute, approval levels
- 5. Consolidation all MORLs to CORL
- 6. Interfaces with NOSA and PPBES
- 7. Maintaining Currency annual Review of Req, Jan-Feb prior to NOAA PPBES cycle

Obs Reqs Disciplines and Attributes

Disciplines

- Atmosphere
- Radiance Or Imagery
- Land Surface
- Solid Earth
- Cryosphere
- Biosphere
- Oceans
- Hydrosphere
- Human Dimensions
- Sun-earth Interactions

Attributes

- User Info (POC, Phone, Email)
- Observational Requirement
- Observational Requirement Priority
- Global Climate Master Change (GCMD): Topic/Discipline, Term, Variable
- Observational Requirement Type: Biological, Chemical, Physical
- Timeline
- Threshold/Objective
- Geographic Coverage
- Vertical Range
- Vertical Resolution
- Horizontal Resolution
- Mapping Accuracy
- Measurement Range
- Measurement Accuracy
- Measurement Precision
- Sampling Interval
- Data Latency
- Long-Term Stability
- Associated NOAA Program Outcome

Observational Requirements Collection Process Description – 7 Steps

- 1. Identification and Collection current documentation
- 2. Translation and Standardization MORL/GCMD
- 3. Revision and Prioritization by program
- 4. Validation by parameter, attribute, approval levels
- 5. Consolidation all MORLs to CORL
- 6. Interfaces with NOSA and PPBES
- 7. Maintaining Currency annual Review of Req, Jan-Feb prior to NOAA PPBES cycle

Prioritization – 2 Levels

1) Parameter Prioritization

Priority 1 – Mission Critical
Priority 2 – Mission Optimal
Priority 3 - Mission Enhancing

2) Example Attribute Prioritization

Goal				Msmnt Acc				LTS
W&W	CONUS	2		1-2	2	1		3
CLI	Global	1	2	1	1	2	3	1

Observational Requirements Collection Process Description – 7 Steps

- 1. Identification and Collection current documentation
- 2. Translation and Standardization MORL/GCMD
- 3. Revision and Prioritization by program
- 4. Validation by parameter, attribute, approval levels
- 5. Consolidation all MORLs to CORL
- 6. Interfaces with NOSA and PPBES
- 7. Maintaining Currency annual Review of Req, Jan-Feb prior to NOAA PPBES cycle

Significant Milestones

Spring 2004

- Translated NOAA LO requirements to NOAA Program needs
- Defined naming convention; standardized template schema
- Developed 27 draft MORLs

Summer 2004

- Incorporated and updated with FY07 Program Baseline Assessments
- Developed phased-approach schedule for CORL publication in Spring 2005

Fall 2004

- Completed Phase 1 identification of *Priority-1* observation requirements and *Threshold level* attributes
- Transitioned over 1400 Obs Reqs (67K attribute values) from Program Excel spreadsheets to on-line relational (CasaNOSA) database

Winter 2004-2005

- Uploaded all Phase 1 Draft MORLs to NOSA Web site
- Data Call for Phase 2 (Priority 2&3, Threshold & Objective Levels)

Planned April May 2005

Generation of first CORL representing 31 NOAA Programs

www.nosa.noaa.gov

Wed Jan 05 2005 12:05:27 GMT-0500 (Eastern Standard Time)

Site Information

- About NOSA
- About Architecture
- Observing System Inventory
- Relationship to PPBES
- NOAA Programs and Environmental Observation Requirements
- Observation Requirements vs
 System Capabilities Tool
- How is NOSA used?
- Target Architecture
- Strategic Direction (pdf)
- NOAA Observing Systems
 Council(NOSC)

NOSA Interactive Map

Featured Observing System

OAR/PMEL Fisheries Oceanography Coordinated Investigations(FOCI)

FOCI (NOAA/PMEL and NOAA/AFSC Fisheries-Oceanography Coordinated Investigations) conducts research to better understand the relationship between the marine environment and the survival of commercially valuable fish in the North Pacific, and how climate impacts the ecosystems of the North Pacific. Moorings are an integral part of data collection, and FOCI has been deploying moorings at numerous short- and long-term sites since 1983. PMEL-FOCI moorings produce temperature, salinity, meteorological variables, current velocities, fluorescence, nutrients and other time series parameters in the ocean environment. Studies are focused in the Bering Sea and North Pacific, and encompass large and varying dynamic systems sensitive to change at both regional and global extents.

View FOCI Stations: Map Station List

Other Observing Systems

Select an Observing System

- NOSA Geospatial Database Search
- Catalog of NOAA's Observing Systems (PDF).

About NOSA

NOAA initiated its first-ever comprehensive review of all its observing systems and their interrelationships. This activity was termed the baseline **NOAA Observing System Architecture (NOSA).**

The baseline NOSA was constructed with the assistance of all observing system managers, research and operational, within NOAA.

More about NOSA

A Spatial Portal to NOAA's Observing Systems (presentation at the 2004 AGU Meeting)

NOSA Observing Systems Database

US Dept of Commerce > NOAA > NESDIS > NOSA

privacy policy

NOAA Observing Systems Architecture (NOSA)

About NOSA

About Architecture

Observing System Inventory

> Group on Earth Observations

Relationship to PPBES

NOAA Programs and Environmental Observation Requirements

Observation Requirements vs System Capabilities Tool

How is NOSA used?

Target Architecture

Observing System	Acronym
NASA-QuikSCAT	QuikSCAT
NESDIS-Geostationary Operational Environmental Satellite I-M	GOES-I/M
NESDIS-Geostationary Operational Environmental Satellite NOP	GOES NOP
NESDIS-IPO-Defense Meteorological Satellite Program	DMSP
NESDIS-Marine Optical Buoy	MOBY
NESDIS-National Polar-orbiting Operational Environmental Satellite System	NPOESS
NESDIS-National Polar-orbiting Operational Environmental Satellite System Preparatory Project	NPOESS-NPP
NESDIS-Polar Operational Environmental Satellite	POES
NESDIS-U.S. Climate Reference Network	USCRN
NMFS-Coral Reef Watch - Coral Reef Early Warning System	CREWS
NMFS-Fishery Dependent - Commercial Statistics	FIS
NMFS-Habitat Assessment	Habitat
NMFS-Living Marine Resources	LMR
NMFS-Marine Recreational Fisheries Statistics Survey	MRFSS
NMFS-National Observer Program	NOP
NMFS-Protected Resources Surveys	None
NOS-Continuously Operating Reference Stations	CORS
NOS-Hydrographic Surveying	HYDRO
NOS-National Current Observation Program	NCOP
NOS-National Status and Trends Mussel Watch Program	NS&T MUSSEL
NOS-National Water Level Observation Network	NWLON
NOS-Physical Oceanographic Real-Time System	PORTS
NOS-System-Wide Monitoring Program	NERR SWMP
NWS-Automated Remote Collector	ARC
NWS-Automated Surface Observing Systems	ASOS
NWS-Coastal-Marine Automated Network	CMAN
NWS-Cooperative Observer Program	COOP
NWS-Fischer and Porter gage	FNP
NWS-Hydrometeorological Automated Data System	HADS
NWS-Lightning Detection	NLDN
NWS-Limited Automated Remote Collector	LARC

Observational Requirements Database

D 1011	HECDIC - NOCA			
Dept of Commerce > NOAA >	NESDIS > NOSA	*		
1001				
NOAA Obs	erving Systems A	rchitecture (NOSA)		
_				
About NOSA	Requirements to O	bservations		
About Architecture				
		Ecosystem Goal	html	.xls
Observing System Inventory		Habitat	View	Download
Group on Earth		Corals	View	Download
Observations		Coastal and Marine Resources		
Polationship to DDDES		Protected Species	View	Download
Relationship to PPBES		Fisheries Management		
NOAA Programs and		Aquaculture	View	Download
Environmental Observation		Enforcement		
Requirements		Ecosystem Research	View	Download
Observation Requirements		Ecosystem Observations	View	Download
vs System Capabilities Tool				
How is NOSA used?		Climate Goal	html	.xls
		Climate Observations & Analysis	View	Download
Target Architecture		Climate Forcing	View	Download
		Climate Predictions & Projections		
		Climate & Ecosystems		
		Regional Decision Support		
		Washington and Water Cont	D.L I	
		Weather and Water Goal	html	.xis
		Local Forecasts and Warnings	View	Download
		Space Weather	View	Download
		Hydrology	View	Download
		Air Quality	View	<u>Download</u>
		Environmental Modeling	View	Download
		Science, Technology, and Infusion		1
		Coasts, Estuaries and Oceans		
		Commerce and Transportation Goal	html	.xls
		Marine Transportation Systems	View	Download
		Aviation Weather	View	Download
		Marine Weather	View	Download
		Geodesy	View	Download
		NOAA Emergency Response		

CT/Marine Weather MORL

Dept of Commerce> NOAA> NESDIS> NOSA

privacy po

NOAA Observing Systems Architecture (NOSA)

Goal: Commerce & Transportation Program/Sub-Program: Marine Weather

Parameter	1 Priority	т/о	Geo Coverage	Vert Range Low	Vert Range High	Vert Range Units	Vert Res.	Vert Res. Units	Horz Res.	Horz Res. Units	Mapping Accuracy	Mapping Accuracy Units	Msmnt Range Low	Msmnt Range High	Msmnt Range Units	Msmnt Accuracy	Msmnt Accuracy Units	Msmnt Precision	Msmnt Precision Units	Sampling Interval	Sampling Interval Units	Data Latency	Data Latency Units
Air Temperature,	1	т	Hemispheric	0	800	hPa	25	mb	20	km	na	na	210	320	к	1	к	1	к	1	hr	5	min
Boundary Layer		0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Air Temperature,	1	т	Mesoscale	0	500	hPa	500	m	10	km	2	km	210	320	к	1	к	na	na	1	hr	3	min
Profiles		0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Cloud	1	т	Hemispheric	0	500	hPa	na	na	0.5	km	na	na	0	100	%	na	na	na	na	5	min	1	min
Imagery		0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Visibility	1	т	Ocean Basin	0	0	na	na	na	2	km	0.5	km	0	10	km	0.5	km	0.5	km	1	hr	1	hr
		0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Visibility	1	т	Ocean Basin	0	0	na	na	na	2	km	0.5	km	0	9.3	km	0.46	km	0.46	km	1	hr	1	hr
		0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Ocean Wave	1	т	Hemispheric	0	0	na	na	na	10	km	2.5	km	10	360	deg	10	deg (avg)	na	na	1	hr	15	min
Direction	Direction	0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	km	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs

For Priority Categories:

"1" = Mission Critical / Cannot meet operational mission objectives without this data

"2" = Mission Optimal / Data not critical but would provide significant improvement to operational capability

"3" = Mission Enhancing / Needed to enhance state of knowledge / assess potential for operational capability

back to Requirements go to NOSA home

CORL Matrix Template & IUAOS/Climate

- Tool for your use to capture your group's consensus, platformindependent Obs Regs needs to meet your mission
- Entries to consider from NOAA Climate/COA and Climate/CF
- Entries to consider from GCOS
- Flexibility add columns, stratification (GEO, VR, Temporal) and/or comments to capture your group's Obs Reqs
 - Change of Attribute = new requirement
- Enables ability to interface with all other NOAA Goal/Program Obs Reqs
- Enables ability to interface with NOAA Gap, Target Arch and Investment Analyses
- Consistency with GCOS, IWGEO, NOAA Climate/ COA & CF and W&W/AQ, Hydro, EMP & LFW......