Monitoring and Detecting Climate Variability and Change – Atmospheric Composition

Sam Oltmans and John Ogren NOAA Climate Monitoring and Diagnostics Laborabory

> Mike Kurylo NASA Headquarters

With contributions from WMO/GAW and NDSC Working Groups

Workshop on Climate Requirements for Upper-Air Observations Boulder, Colorado February 8-10, 2005

Role of Atmospheric Composition in Climate Change

- Greenhouse gases and particles that drive climate change.
- Stratospheric ozone depletion (ozone, source gases, active halogens, reservoir species, particles-PSCs).
- Atmospheric cleansing capacity (hydroxol not usually thought of in a climate context but influences greenhouse gases such as methane).
- Air quality (air pollution produces ozone and particles that are important climate constituents).

In all of these roles there are important sources and sinks for these constituents as well as active atmospheric chemistry that have very important vertical structure.

Role of Atmospheric Composition in Climate Change

- Greenhouse gases and particles that drive climate change.
- Stratospheric ozone depletion (ozone, source gases, active halogens, reservoir species, particles-PSCs).
- Atmospheric cleansing capacity (hydroxol not usually thought of in a climate context but influences greenhouse gases such as methane).
- Air quality (air pollution produces ozone and particles that are important climate constituents).

In all of these roles there are important sources and sinks for these constituents as well as active atmospheric chemistry that have very important vertical structure.

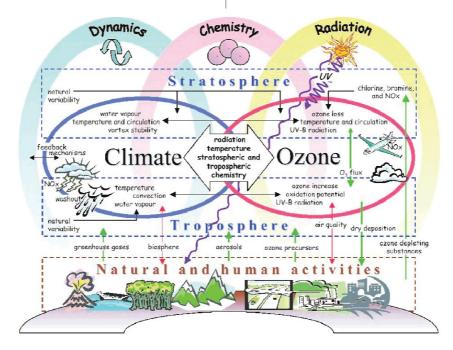
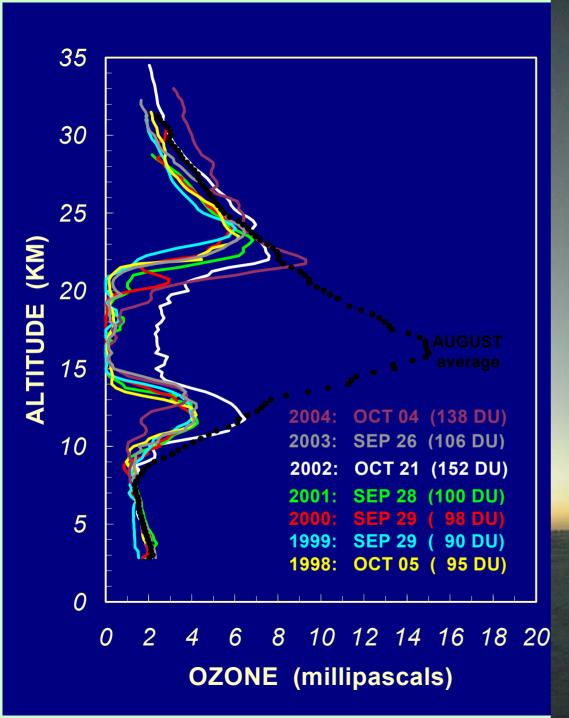
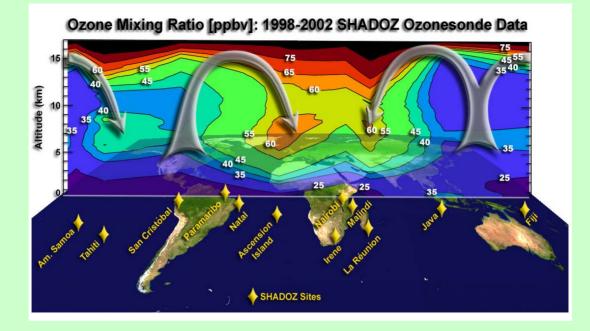
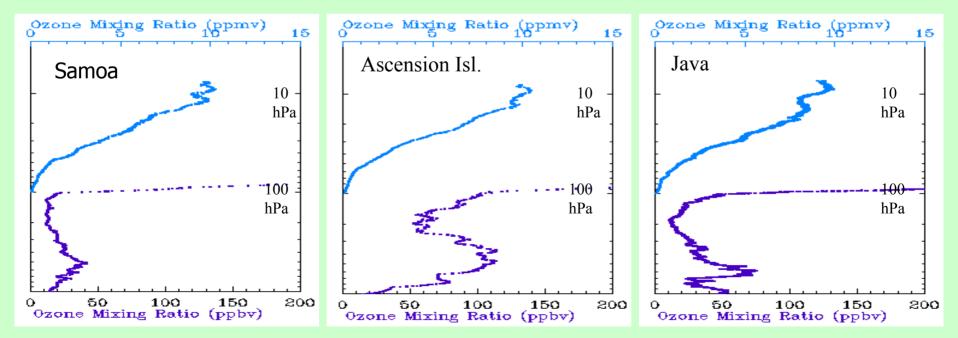
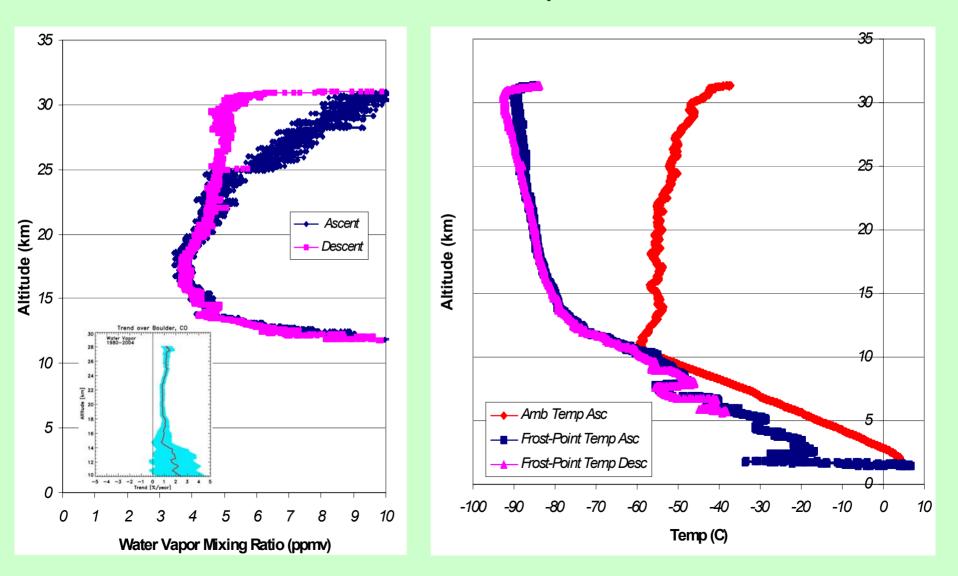





Figure 2.8. Interactions between climate, atmospheric composition, chemical and physical processes and human activities (*after Isaksen, 2003*).



SOUTH POLE OZONESONDE MINIMUM PROFILES Tropical Tropospheric Ozone: Wave-one Phenomena in S.H. ozonesonde data

Water Vapor Profile Over Lauder, NZ on November 11, 2004

Composition Requirements

- Report of "The Integrated Global Atmospheric Chemistry Observations (IGACO) Theme" of the Integrated Observing Strategy.
 - Can serve as basis for developing requirements for measurement of atmospheric constituents.
 - Provides examples of existing and planned observing systems including profile measurements (ground-based, aircraft, satellite).

Chemical Species	Air Quality	Oxidation Efficiency	Climate	Stratospheric Ozone Depletion
O ₃	1	1	1	✓
СО	1	1	_	_
<i>j</i> (NO ₂)	1	1	-	-
<i>j</i> (O ¹ D)	1	1	_	-
H ₂ O (water vapour)	1	1	1	1
НСНО	1	1	_	-
VOCs	1	1	_	-
Active nitrogen: $NO_x = NO+NO_2$ Reservoir species: HNO_3	5 5	<i>J</i> <i>J</i>		\ \
N ₂ O	-	-	√	✓
SO ₂	✓	-	1	-
Active halogens: BrO, CIO, OCIO Reservoir species: HCI, CIONO ₂ Sources: CH ₃ Br, CFC-12, HCFC-22, halons	- - -	- - -	- - -	\ \ \
Aerosol optical properties	\checkmark	-	✓	✓
CO ₂	-	-	1	-
CH ₄	-	✓	1	 Image: A set of the set of the
Critical Ancillary Parameters				
Temperature	\checkmark	 Image: A set of the set of the	✓	✓
Pressure	✓	✓	√	✓
Wind speed (u, v, w)	✓	✓	√	 Image: A start of the start of
Cloud-top height	✓	1	1	 Image: A second s
Cloud coverage	✓	<i>✓</i>	1	 Image: A start of the start of
Albedo	✓	<i>✓</i>	1	 Image: A start of the start of
Lightning flash frequency	✓	<i>✓</i>	1	 Image: A second s
Fires	1	1	1	-
Solar radiation	1	1	1	 Image: A second s

ATMOSPH	ERIC SPECIES	IN GR	OUP 1 T	O BE ME	ASURE	D BY AN	INTEGR/	ATED GL	OBAL O	BSERVI	NG SYS	ГЕМ
Atmospheric Region	Requirement	Unit	H ₂ O	O ₃	CH ₄	CO ₂	CO	NO ₂	BrO	CIO	HCI	CFC-12
1.	Δx	km	5/25	<5/50	10/50	10/500	10/250	0/250	50			
	Δz	km	0.1/1	0.5/2	2/3	0.5/2	0.5/2	0.5/3	2			
Lower troposphere	Δt		1hr	1hr	2hr	2hr	2hr	1hr	1hr			10d
troposphere	precision	%	1/10	3/20	1/5	0.2/1	1/20	10/30	10			2*
	trueness	%	2/15	5/20	2/10	1/2	2/25	15/40	15			4*
	delay		(1)/(2)	(1)/(2)	(1)/(2)	(1)/(2)	(1)/(2)	(1)	(2)			
2.	Δx	km	20/100	10/100	50/250	50/500	10/250	30/250				
	Δz	km	0.5/2	0.5/2	2/4	1/2	1/4	0.5/3				
Upper transses	Δt		1hr	1hr	2hr	2hr	2hr	1hr				
troposphere	precision	%	2/20	3/20	1/10	0.5/2	1/20	10/30				
	trueness	%	2/20	5/30	2/20	1/2	2/25	15/40				
	delay		(1)/(2	(1)/(2)	(1)/(2)	(1)/(2	(1)/(2)	(1)				
3.	Δx	km	50/200	50/100	50/250	250/500	50/250	30/250	100	100	50/250	1000
	Δz	km	1/3	0.5/3	2/4	1/4	2/5	1/4	1	1	1/4	
Lower	Δt		1d	1d	6-12hr	1d	1d	6-12hr	6hr	6hr	6-12hr	10d
stratosphere	precision	%	5/20	3/15	2/20	1/2	5/15	10/30	10	10	5/10	6
	trueness	%	5/20	5/20	5/30	1/2	10/25	15/40	15	15	15	15
	delay		(1)/(2	(1)/(2)	(1)/(2)	(2)/(3)	(2)/(3)	(1)	(2)	(2)		
4.	Δx	km	50/200	50/200	50/250	250/500	100/500	30/250	100	100	50/250	
	Δz	km	2/5	0.5/3	2/4	2/4	3/10	1/4	1	1	1/4	
Upper	Δt		1d	1d	1d	1d	1d	1d	1d	1d	1d	
stratosphere, mesosphere	precision	%	5/20	3/15	2/4	1/2	10/20	10/30	10	10	5/10	
mesosphere	trueness	%	5/20	5/20	5/30	1/2	10/25	15/40	20	20	15	
	delay		(1)/(2	(1)/(2)	(1)/(2)	(2)/(3)	(2)/(3)	((1)/(2)	(2)	(2)		
5.	Δx	km	50/200	10/50	10/250	50/500	10/250	30/250	100	100	30/250	1000
	Δt		1d	1d	12hr	1d	1d	12hr	12hr	12hr	6-12	10d
Total column	precision	%	0.5/2	1/5	1/5	0.5/1	1/10	1/10	10	10	4	4
	trueness	%	1/3	2/5	2/10	1/2	2/20	2/20	15	15	6	10
	delay		(1)/(2)	(1)/(2)	(1)/(2)	(2)/(3)	(1)/(2)	(1)	(2)			
6.	Δx	km	10/200	10/50	10/50	10/500	10/250	10/250	25			1000
	Δt		1hr	1hr	2hr	2hr	2hr	1hr	1hr			10d
Tropospheric	precision	%	0.5/2	5/15	1/5	0.5/1	2/20	1/10				4
column	trueness	%	1/3	5/15	2/10	1/2	5/25	2/10				10
	delay		(1)/(2)	(1)/(2)	(1)/(2)	(1)/(2)	(1)/(2)	(1)				

ATMOS	PHERIC SPECI	ES IN (GROUP	2 TO BE	MEASU	RED BY	AN INTE	GRATED	GLOBAL (OBSERV	NG SYS	TEM
Atmospheric Region	Requirement	Unit	NO	HNO ₃	C ₂ H ₆	CH₃Br	Halons	HCFC-22	CIONO ₂	нсно	SO ₂	UVA j(NO ₂) UVB j(O1D)
1.	Δx	km	10/250	10/250	50	500*				1	1	
	Δz	km	0.5/3	1/3	?					2-5	2-5	2-5
Lower troposphere	Δt		1hr	1d	1hr	10d	10d	10d		1hr	1hr	1hr
troposphere	precision	%	10/30	10/30	10	4*	15*	2*		10	5	7/10*
	trueness	%	15/40	15/40	15	8*	20*	4*		15	10	15*
	delay		(1)	(1)/(2)						(1)	(1)	
2.	Δx	km	30/250	10/250	50					10	10	50/500
	Δz	km	0.5/3	1/3	2					0.5	0.5	3**
Upper troposphere	Δt		1hr	1d	1hr						1hr	1hr
troposphere	precision	%	10/30	10/30	10					10	5	10
	trueness	%	15/40	15/40	15					15	10	15
	delay		(1)	(1)/(2)						(1)	(1)	
3.	Δx	km	30/250	50/250		500	500	1000	50/250			
	Δz	km	1/4	1/4		5	5	5	1/4			
Lower	Δt		12hr	12hr		3d	3d	3d	6-12hr			
stratosphere	precision	%	10/30	10/30		4	4	8	20			
	trueness	%	15/40	15/40		8	8	15	30			
	delay		(1)	(1)/(2)								
4.	Δx	km	30/250	50/250					50/250			
	Δz	km	1/4	1/4					2/6			
Upper	Δt		1d	1d					1d			
stratosphere, mesosphere	precision	%	10/30	10/30					20			
mesosphere	trueness	%	15/40	15/40					30			
	delay		(1)/(2	(2)/(3)								
5.	Δx	km	30/250	30/250	50			1000	30/250		50	
	Δt		1d	1d	1hr			10d	6-12hr		1hr	
Total column	precision	%	1/10	1/10	1			5	20		1	
	trueness	%	2/20	2/20	2			15	30		2	
	delay		(1)	(2)/(3)							(2)	
6.	Δx	km	10/250	10/250		1000	1000	1000				
	Δt		1hr	1d		10d	10d	10d				
Tropospheric	precision	%	1/10	1/10		4	4	6				
column	trueness	%	2/20	2/20		8	8	15				
	delay		(1)	(1)/(2)								

IUOS/Climate					SPATIA	AL.		м	EASUREMENTS			TEMPOR	AL
Observational Requirement	<u>Obs</u> <u>Req</u> <u>Pri</u>	<u>User</u>	<u>T/</u> O	<u>Geo Cover</u>	<u>Vert Range</u>	<u>Vert Res</u>	<u>Horz Res</u>	<u>Msmnt Range</u>	<u>Msmnt Accuracy</u>	<u>Msmnt</u> <u>Precsn</u>	<u>Sampling</u> <u>Interval</u>	<u>Data</u> <u>Latency</u>	<u>Long-Term Stability</u>
Air Temperature: Surface	1	NOAA / COA	т	Global and Hemispheric	Sfc	na	10 km	170 -350 K	0.1 K	0.5 K	60 min	6 hr	0.04 K/Decade
			0	Land	Sfc	na	5 km	tbs	tbs	tbs	tbs	tbs	tbs
	UA	GCOS	т	Global	Sfc	na	100 km	tbs	0.5 K	tbs	12 hr	48 hr	tbs
			0	Global	Sfc	na	25 km	tbs	0.2 K	tbs	3 hr	24 hr	tbs
	1	IUAOS	т	Global									
			ο										
	1	NOAA / CF-LTM	т	Global	0.1 - 35 km	100 m	2500 km	0 - 10 ppm	5 %	5 %	1 wk	1 mon	5 %/Decade
Ozone: Profiles			0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
Ozone. Promes	1	NOAA / CF-PS	т	CONUS and Global	0 - 15 km	100 m	100 m	0.001 - 10K ppb	20 %	20 %	0.2 sec	1 day	30 %/Decade
			0	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs	tbs
	UA	GCOS	т	Global	tbs	tbs	8 km	tbs	tbs	tbs	48 hr	720 hr	tbs
			0	Global	tbs	tbs	1 km	tbs	tbs	tbs	24 hr	240 hr	tbs

IUOS/Climate					SPATIA	AL .		м	EASUREMENTS			TEMPOR	AL
Observational Requirement	<u>Obs</u> <u>Req</u> <u>Pri</u>	<u>User</u>	<u>T/</u> O	<u>Geo Cover</u>	<u>Vert Range</u>	<u>Vert Res</u>	<u>Horz Res</u>	<u>Msmnt Range</u>	<u>Msmnt Accuracy</u>	<u>Msmnt</u> <u>Precsn</u>	<u>Sampling</u> <u>Interval</u>	<u>Data</u> <u>Latency</u>	Long-Term Stability
	1	IUAOS	т	Global									
			ο										
Water Vapor: Profiles	1	NOAA / COA	т	Global and Hemispheric	Sfc - Meso	HS/M: 3 km LS/HT: 1 km LT: 0.5 km	10 km	0 - 20 gm/Kg	5 %	10 %	60 min	6 hr	2.5 %/Decade [1] %/Decade
			0	tbs	tbs	tbs	tbs	tbs	5 %	tbs	tbs	tbs	0.026 %/Decade
	UA	GCOS	τ	Global	tbs	HS/M: 3 km LS/HT: 1 km LT: 2 km	500 km	tbs	10 %	tbs	6 hr	12 hr	tbs
			0	Global	tbs	HS/M: 2 km LS/HT: 0.5 km LT: 0.1 km	100 km	tbs	5 %	tbs	3 hr	3 hr	tbs
	?	IUAOS	т	Global									
			ο										
Water Vapor: Surface	1	NOAA / COA	т	Global and Hemispheric	Sfc	na	10 km	1 - 20 gm/Kg	5 %	10 %	60 min	6 hr	2.5 %/Decade [1] %/Decade
			0	tbs	Sfc	na	tbs	tbs	tbs	tbs	tbs	tbs	0.026 %/Decade
	UA	GCOS	т	Global	Sfc	na	100 km	tbs	2 %	tbs	6 hr	72 hr	tbs
			0	Global	Sfc	na	25 km	tbs	1 %	tbs	3 hr	24 hr	tbs

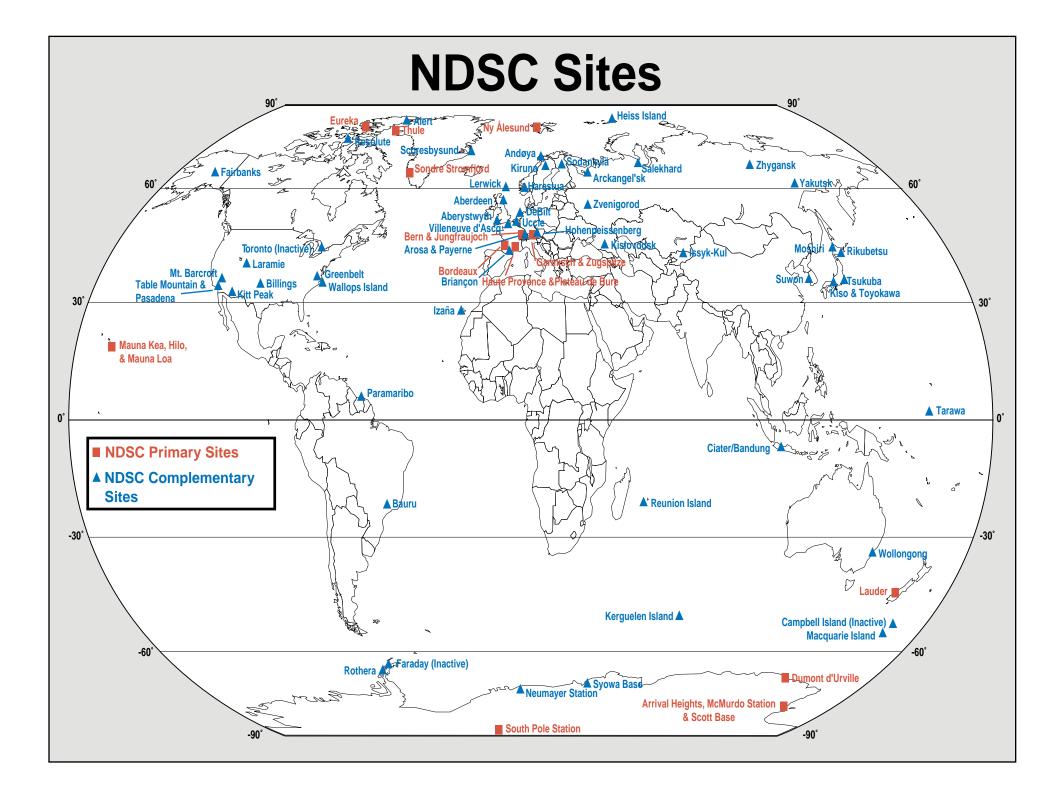
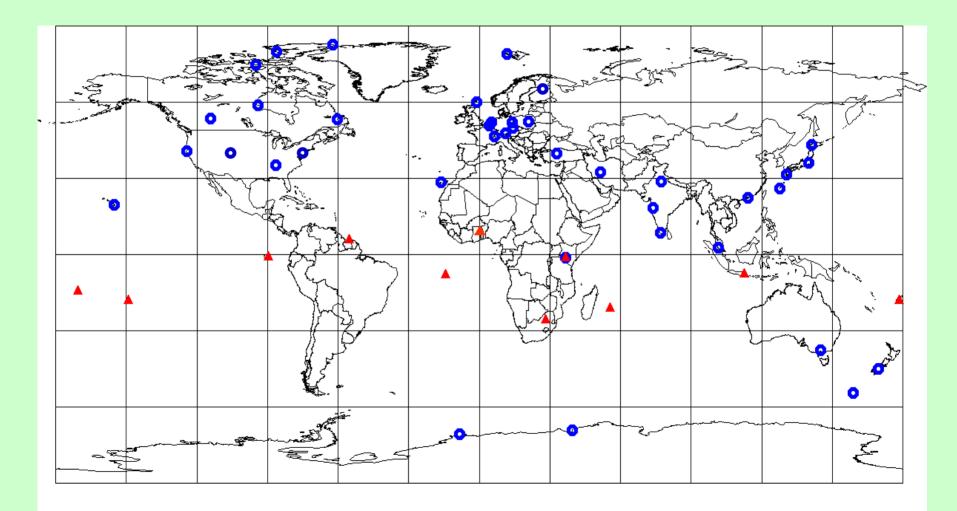

COMPONENT		90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
Non-Satellite Global		-	+	-	-		-	-	+	-	-	-		-	-	_		-		-	-	-	-	-	-	-	-				—	-
Surface total column Dobson	С, Р																	-														
Surface total column Brewer	C, P																															
Surface-based vertical profile Microw	ave P	7777	inni.	innn	innin	m	inni	m	inn	inni		-								-	-			-		-						
Surface-based Lidar profile	P	1111	inn	innin	inni	m	inni	m	innn	inni	-	-						-			-		-	-		-						
Balloon vertical profile	P				-				-		-	-											-									
Aircraft			-		-			-	-			-									-		-			-						
MOZAIC	LS						111	m	hinn	m		-		-	-	_		-	_	-	-	_	-	_	-	_	_	_	_			
NOXAR	LS		-					aa	2																							
CARIBIC	LS									m		m	ann	m		m	m	unn	m	m	m	m	m	m	m	m	2					
Satellite		-	-	-	-			-	-	-	-	-				_				-	-		-	-		-						
NIMBUS 7/TOMS 79	С	7777	han		2			-	-	-	-	-		-						-	-	-	-	-	-	-						
ERBS SAGE-II 84	P		1	1											-						-		-			-						
UARS MLS 91	P		011	ànn	mm	m	mm	m	han	mm		m	mm	mm			-	-		-			-		-							
UARS HALOE 91	P		_	inn	-		-		_	-	-		-					mm		-	-		-		-	-						
METEOR TOMS 92	c		_		mm														-	-	-			-	-	-		<u> </u>				
SPOT 3/4 POAM II/III	P	+	-		m	-	-			7777								uuu		-	-		-	-		-						
ERS GOME-1 95	C, P		-	-				_	in na											-	-		-			-						
EP TOMS 96	C	-	-	-		-			-	-		1					1				-		-									
OD IN SMR	P	-	-		-		-													-	-	-	-		-	-						
OD IN OSIRIS	P	-	-	-				-		-	-	-									-	-	-			-						
ENVISAT MIPAS 02	P		-		-	-	-	-	-	-		-								-	-	-	-	-	-	-						
ENVISAT GOMOS 02	P	-	-					-	-	-				-		_		mm			-	-	-			-						
ENVISATISCIAMACHY 02	C, P	-	-	-	-	-	-	-	-	-	-	-		m	m					-	-	-	-		-	-						
METEOR 3M SAGE-III 02	P	-	-	-	-			-	-	-		-								-	-	-	-									
AQUA AIRS 02	C		-	-				-	-	-	-	-					m	mm	m	2	-		-		-							
ADEOS 2 ILAS 03	P	-	-	-		-		-	-	-	-	-			77777						-	-	-									
AURA HRLDS 04	P	-	-	-	-		-	-	-	-	-	-		-		m	m	inn	m	m	mm	3	-	-	-	-	-					
AURA MLS 04	P	-	-	-	-			-	-	-		-		-				mm		-	-		-	-		-						
AURA OMI 04	C, P		-	-	-			-			-	-						inn	m	m	mm		-									
AURA TES 04	C, P		-					-	-	-	-	-		-				inn	m	inn			-	-	-	-						
METOP 1, 2, 3 GOME-2 05	C		-			-		-		-		-											-									
METOP IASI 05	c		-			-	-	-	-	-		-		-			-		1					-								
NOAA HIRS	c					-									-		-									-						
NOAA SBUY-2	C, P																															
NPOESS OMPS 10	C, P																											-				
NPPOMPS 10	C, P		-			-	-	-		-		-		-		-		m		m	m	m				-						
SCISATACE 03	е,. Р	-	-	-	-			-	-	-	-	-				ann	m						-				-					
SCISAT MAESTRO 03	P		-				-	-		-		-						m		-	-					-						
		AL I		availa availa					andr	eplac	eme	nt gu	arant	eedl	oyag	ency		UT/L C = c P= pr T= tro S= st	olumi ofile (posj	n phero		lowe	r strat									

Figure 4.2: An Overview of satellite, ground-based and aircraft measurements for stratospheric O₃.


COMPONENT		90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
Non-Satellite Global		-										_																		_	_	—
Surface in situ (GAW with NOAA CMDL)																																
Surface-based Lidar profile												,,,,,,		m		,,,,,,	m	m			1	1			1							=
Balloon vertical profile																														_	=	
Aircraft											\square					_																
	D LIT																															
MOZAIC	P,UT	_				m									-				-	-	-	-		-	-	-		-		-	_	_
NOXAR	P,UT							7777																								
CARIBIC	P,UT								7777	an	unii	////		aaa			1111	aa	m	an	um a	ana		aaa	m	aaa	1					
NOAA CMDL															7777	1111																
Satellite																																
Indirect-Subtract Stratosphere																																
TOMS	С, Р — ¹	7777			m																									_		
ERS GOME-1 95	C, P						7777	m	m	m	mi	m	m	m				m												_		
AURA OMI 04	C, P				-																	1								_		
METOP 1, 2, 3 GOME-2 05	C,P	-			-					-															-							
NPP OMPS 06	С, Р	-										_							m	m	m											
NPOESSIOMPS 10	С, Р	-			-							_					-															
Direct Upper Tropospheric		-															-		-	-				-	-					-		
SAGE II & III	UT, P	7777									mil										-									_		
SPOT-3/4 POAM II/III	(P)	_			7777						mi	_																		_	_	
SCISATACE 03	P '	-																		-										_	_	
SCISAT MAESTRO 04	P																and	m														
Direct Measurement												_																				
ENVISATISCIAMACHY 02	С, Р													m	m		m	m														
AURA TES 04	C, P																m	m	m		m											

 DEMONSTRATION		UT/LS: uppertrop./lowerstrat.
PRE-OPERATIONAL	Data available in near real-time	C = column P= profile
OPERATIONAL	Data available in near real-time and replacement guaranteed by agency	T= troposphere
PROPOSED		S= stratosphere

Figure 4.1. An overview of satellite, ground-based and aircraft meaasurements for tropospheric O_3

Ozonesonde Stations in the WMO/GAW and SHADOZ Networks

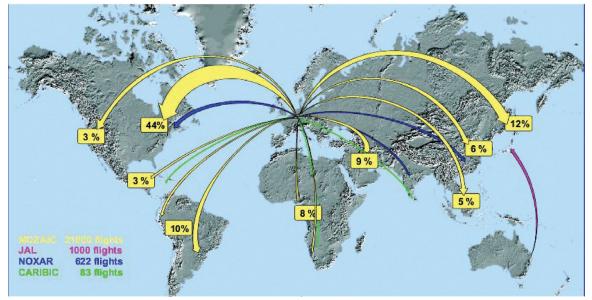


Figure 3.3. Flight routes of MOZAIC (21000 flights 1994-2003, yellow), JAL (ca 1000 flights 1993-2003, purple), NOXAR (622 flights, blue), and CARIBIC (83 flights 1997-2001, green). [Picture courtesy of Andreas Volz-Thomas, Jülich]

Lidar measurements within NDSC

- Measurements generally performed during the night (better SN ratio) and in clear sky conditions
- Accuracy, Temporal and Vertical resolution differ according to instrumental set up (Laser power, ...)
- Long term lidar time series:
 - Stratospheric ozone
 - Tropospheric ozone (different instrumental set up)
 - Temperature
 - Aerosol Backscatter Ratio and Backscatter coefficient (at 532 nm or 355 nm)
- Water vapor lidar measurements (~ 2 15 km) considered for inclusion within NDSC

Lidar measurements within NDSC

Parameter	Altitude	Accuracy	Precision	Vertical Resolution	Temporal Resolution
Trop. Ozone	< 10 km	5-20 %	<10 %	0.2 km	2 hours
	10-15 km	5 %	10 %	0.5 km	2 hours
Strat. Ozone	< 20 km	5-20 %	<5 %	0.6 km	2-4 hours
	20-40 km	<5 %	<5 %	0.6-2 km	2-4 hours
	> 40 km	5-20 %	10-40 %	2-8 km	2-4 hours
Temperature	10-20 km	<2 K	0.1 K	0.3 km	2-4 hours
	20-40 km	1-2 K	0.2-2 K	0.3-1 km	2-4 hours
	40-65 km	2-5 K	2-5 K	1-3 km	2-4 hours
	>65 km	5 – 10 K	5 – 10 K	3-8 km	2-4 hours
Aerosols Backscatter Ratio	8-40 km	5 %	5 %	0.3-1 km	2 hours

Conclusions

- An extensive suite of constituent measurements is required to meet the need for monitoring atmospheric composition to meet climate requirements.
- Vertical structure plays a key role in determining the climate impact of atmospheric trace constituents.
- Significant work has already been done in developing measurement requirements related to atmospheric composition.
- Adequate monitoring of atmospheric composition related to climate requires an integrated global observing strategy that includes satellite, aircraft, and ground-based systems using remote sensing and in situ techniques.
- Networks currently exist for measuring atmospheric composition that require expansion in both spatial and temporal density.