

DATA MANAGEMENT

Steve Williams

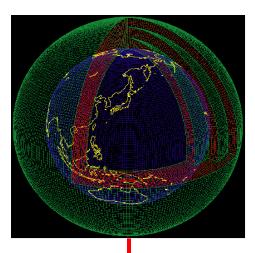
NCAR Earth Observing Laboratory,
Boulder, Colorado, USA

GCOS Reference Upper Air Network (GRAUN)

Implementation Meeting

Lindenberg, Germany

26-28 February 2008

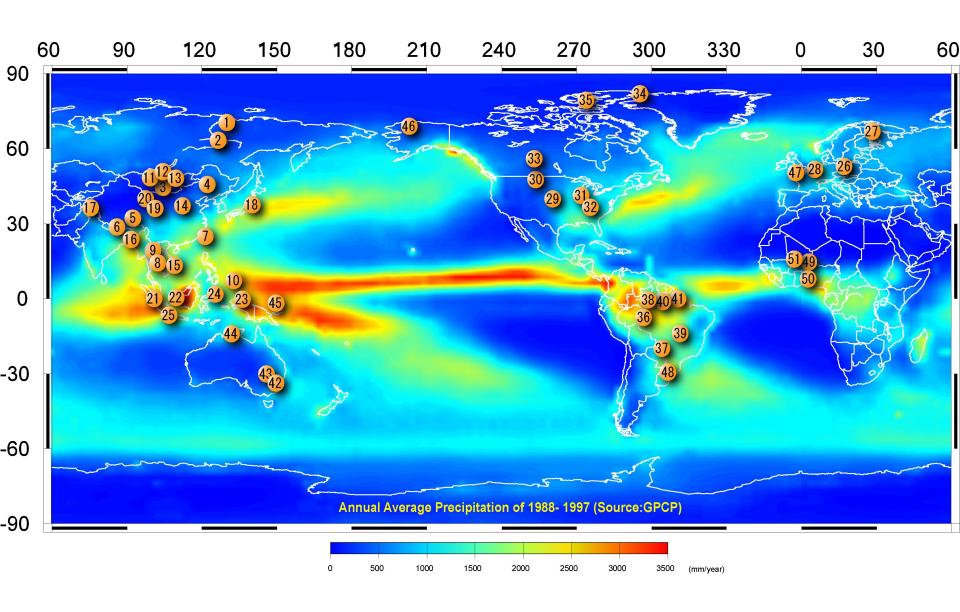


Coordinated Energy and water-cycle Observations Project

Unique Capabilities

A Well Organized Data Archive System_

In-Situ Data Archiving
Center at NCAR (National
Center for Atmospheric
Research) of USA


Model Output Data Archiving
Center at the World Data Center
for Climate, Max-Planck
Institute for Meteorology of
Germany

Data
Integrating/Archiving
Center at University of
Tokyo and JAXA of
Japan

CEOP Reference Site Map

Proposed CEOP Phase 2 Reference Sites

CSE/ RHP	Ref#	Ref. Site Name	Latitude		Longitude		CSE/ RHP	Ref#	Ref. Site Name	Latitude		Longitude	
MAHA SRI/(C AMP)	1	Eastern Siberian Tundra	71.617	N	128.750	E	KHF	26	Lindenberg	52.170	N	14.120	E
	2	Eastern Siberian Taiga	62.255	N	129.618	E	BALTEX	27	Sodankyla	67.370	N	26.633	E
	3	Mongolia Mongolia	45.743	N	106.264	E		28	Cabauw	51.970	N	4.930	E
	4		44.416	N	122.867	E		29	ARM/Southern Great Plains	36.610	N	97.490	
	5	Tongyu Tibet	·· ! ······				H						
	6		31.370	N	91.900	E	CPPA	30	Fort Peck	48.310		105.100	
	0	Himalayas Northern South China Sea -	27.959	N	86.813	Е	/GAPP	31	Bondville	40.010	N	88.290	W
	7	Southern Japan	24.967	N	121.181	E		32	Oak Ridge	35.960	N	84.290	W
	8	Chao-Phraya River	18.400	N	99.470	Е	CliC	33	BERMS (MAGS)	53.990	N	105.120	W
	9	North-East Thailand	14.466	N	102.379	Е		34	Alert, Nunavut	82.467	N	62.500	w
	10	Western Pacific Ocean	7.452	N	134.476	E		35	Eureka, Nunavut	79.995	N	85.813	w
	11	Mongol Arvayheer	46.246	N	102.798	Е	LBA	36	Rondonia	10.080	s	61.930	w
	12	Mongol Nalaikh	47.766	N	107.336	Е		37	Pantanal	19.560	s	57.010	W
	13	Northern Mongolia	47.213	N	108.742	Е		38	Manaus	2.610	s	60.210	w
	14	Downstream of the Yellow River	36.649	N	116.054	Е		39	Brasilia	15.930	s	47.920	w
	15	Central Vietnam	16.033	N	109.185	Е		40	Santarem	3.020	s	54.970	W
	16	Northeast Bangladesh	24.900	N	91.893	Е		41	Caxiuana	1.710	s	51.510	W
	17	Pakistan Karakorum Network	35.728	N	76.286	Е	MDB	42	Tumbarumba (tower)	35.660	s	148.150	Е
	18	Tsukuba	36.110	N	140.100	Е	IIIII	43	Murrumbidgee (soil moisture, tempera	35.116	s	146.375	Е
	19	Lanzhou	35.946	N	104.137	Е		44	ARM/Tropical West Pacific (Manus)	2.060	s	147.430	Е
	20	Heihe River Basin	39.500	N	100.000	Е	Others	45	ARM/Tropical West Pacific (Darwin)	12.430	s	130.890	E
	21	Western Maritime Continent	0.200	s	100.300	Е	Others	46	ARM/Northern Slope of Alaska	71.320	N	156.620	W
	22	Central Maritime Continent	0.000	s	109.400	Е		47	Chilbolton, UK	51.150	N	1.433	W
	23	Eastern Maritime Continent	1.200	s	136.100	Е	LPB	48	Cruz Alta	28.600	s	53.400	W
	24	Northern Maritime Continent	1.500	N	124.900	Е		49	Niamey	13.530	N	2.660	Е
	25	Southern Maritime Continent	uthern Maritime Continent 6.400 S 106.700	Е	АММА	50	Ouémé	9.692	N	1.662	Е		
								51	Gourma	15.300	N	1.500	W

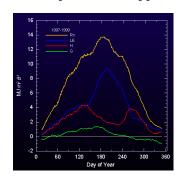
REFERENCE SITE DESCRIPTION

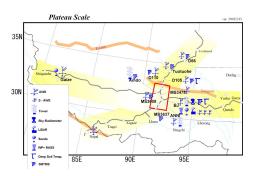
1D Site:

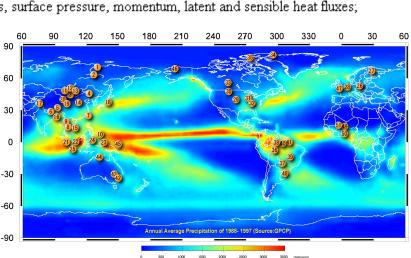
Near surface + surface + sub-surface (Atmospheric sounding* is highly desirable)

2.5D Site:

A few 1D sites + surface heterogeneity with an area of at least 100km²


3D Site:


1D sites network (+3D system) or 2.5D site + 3D atmosphere ** with an area of about 10⁴ km²


The terminology in summarizing these sites is used in the following manner:

- Sub-surface (0 to -1m): Soil moisture and temperature profile, heat conduction and soil characteristics;
- Surface (0 to +2m): Four-component radiation, PAR, surface temperature, surface soil moisture, precipitation, vegetation type characteristics, snow,
- Near surface (+2 to +10m): Temperature, specific humidity and wind speed profiles, surface pressure, momentum, latent and sensible heat fluxes;

*Atmospheric soundings: Radiosonde, wind profile, LIDAR microwave rain radar **3D atmosphere: 3D Doppler radar, cloud radar, aerosonde aircraft.

Reference Site Metadata

Lindenberg Reference Site

STATION NAME:

Falkenberg

CONTACT:

Name: Dr. Frank Beyrich

Affiliation:

Meteorologisches Observatorium Lindenberg Deutscher Wetterdienst (DWD)

Address:

Am Observatorium 12

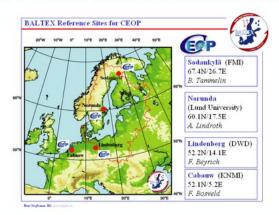
D - 15848 Tauche - OT Lindenberg Germany

E-mail: frank.beyrich AT dwd DOT de Telephone: +49 33677 60228 Fax: +49 33677 60280

WEB PAGES:

• Lindenberg Meteorological Observatory Web Page

BALTEX Home Page


STATION LOCATION:

All meteorological, radiation, soil, tower and flux measurements have been performed at the Falkenberg Boundary Layer Field Site of the Meteorological Observatory Lindenberg (MOL).

The coordinates of the GM Falkenberg are given by: 52° 10' 01" N (52.17°N) and 14° 07' 27" E (14.12°E) at 73 m elevation.

The radiosondes are released at the site of the Meteorological Observatory Lindenberg (MOL) which is about 5 km to the North of the Falkenberg site.

The co-ordinates of the MOL are given by: 52° 12' 36" N (52.21°N) and 14° 07' 12" E (14.12°E) at 112 m elevation.

Individual Site Metadata includes:

- Station (s)
- Contact (s)
- Links to relevant web pages
- Station location (e.g. maps, photos, Google Earth files)
- Station description (e.g. vegetation characteristics, soil types, climate)
- Parameters and Instrumentation descriptions (SFC, TWR, STM, FLX, UA)
- Links to presentations
- Links to data sets and additional documentation

STATION DESCRIPTION:

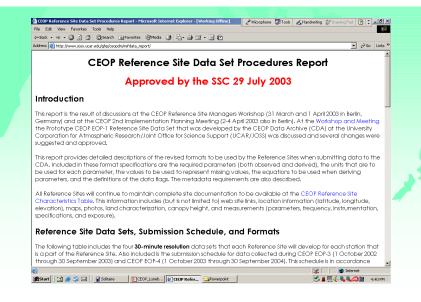
Data exchange guidelines:

- To comply with WMO Resolutions 40 (CG-XII) and 25 (CG-XIII) in particular: No financial implications.
- (2) CDA and *data users*: Commercial exploitation of CEOP data is prohibited.
- (3) Data users: No transfer to third parties.
- (4) Data release to *data users*: Turn-around period.

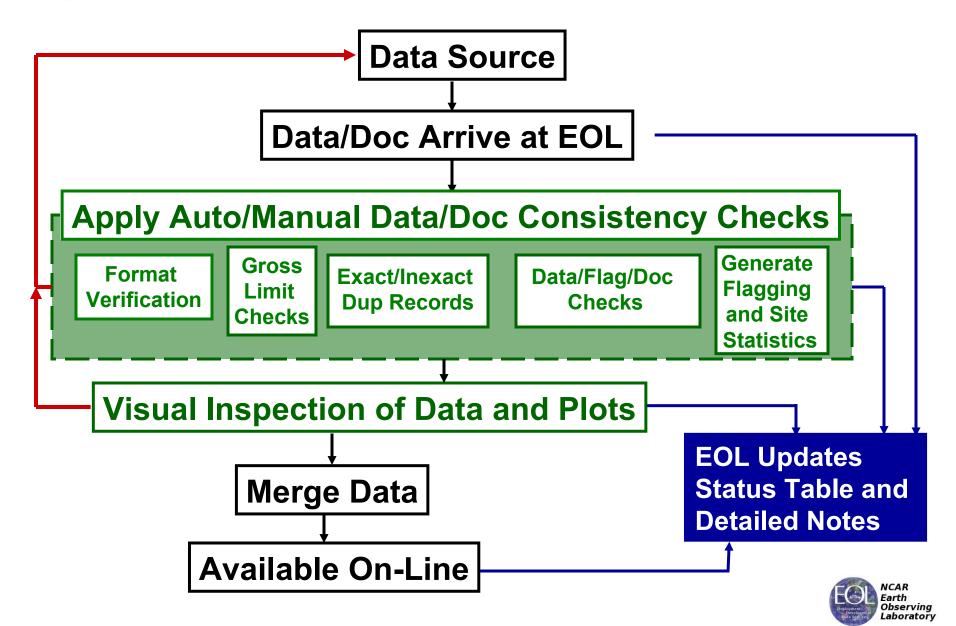
 Category 1 data: 6 months Category 2 data: 15

months

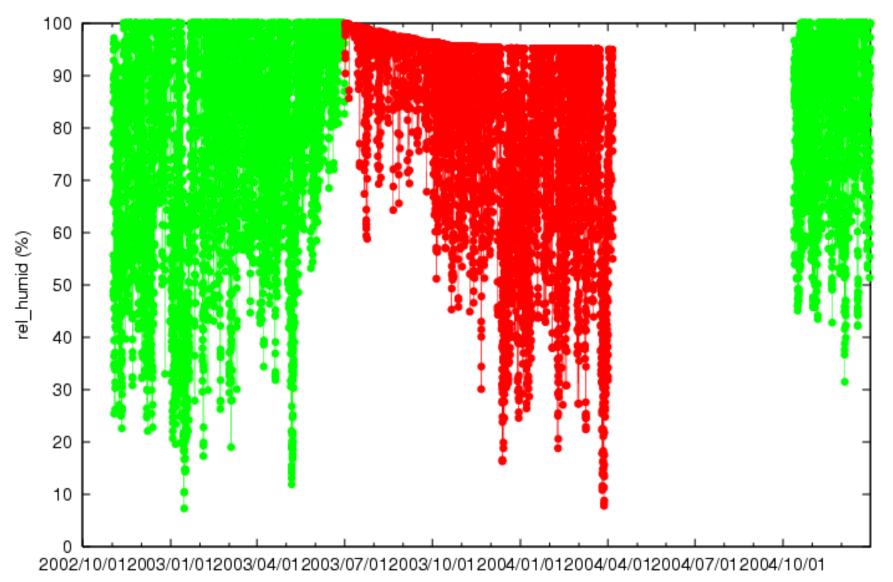
- (5) Acknowledgement and citation
- (6) Co-Authorship for Reference Sites' Pls recommended, collaboration base required if Pl requests co-authorship (in particular for *category 2* data)
- (7) CEOP Publication Library at CDA

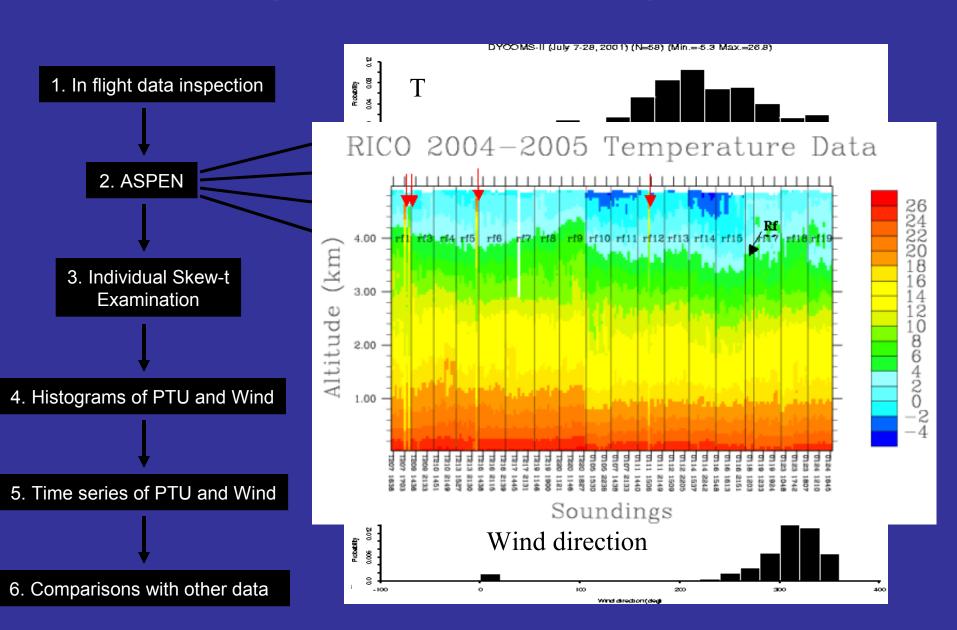


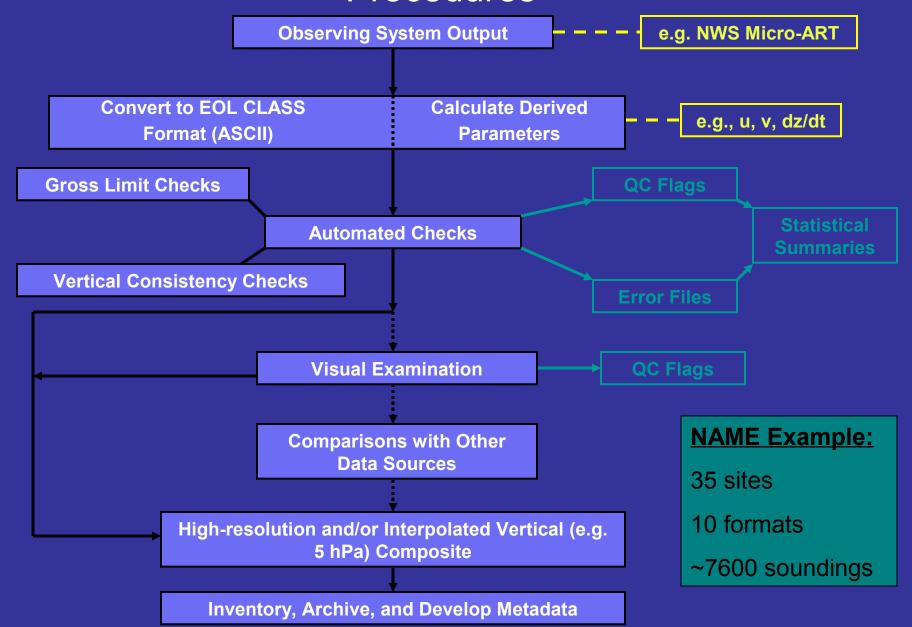
Reference Site Data Set Procedures Report (Approved by the SSC on 29 July 2003)


- Introduction
- Data Set Description, submission schedule, formats
- Metadata
- Gap filling
- Quality Control/Quality Assurance
- File naming convention
- Submission instructions to CDA
- CDA Composite formation
- CDA Quality Assurance
- Rawinsonde Data Sets
- Ancillary Data Sets

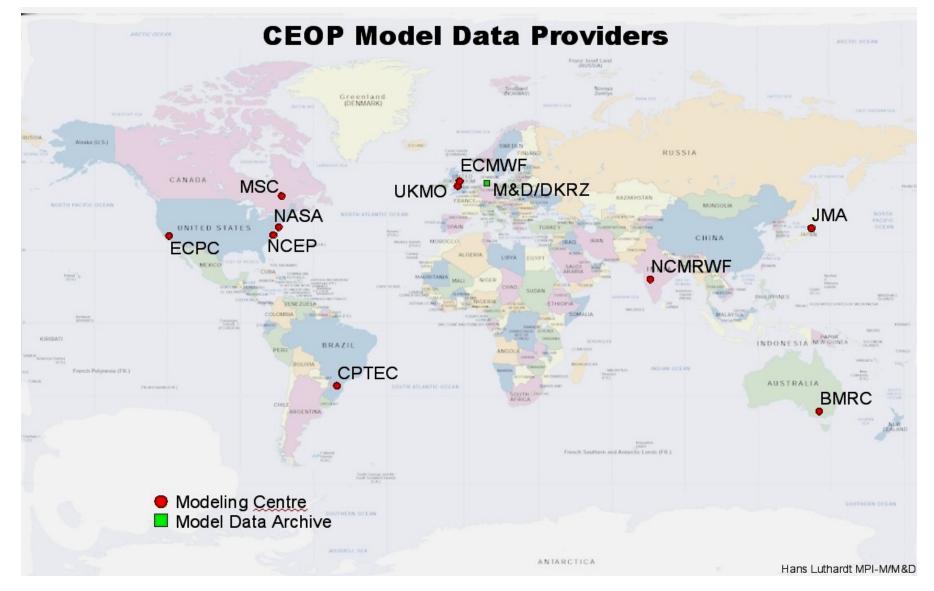
Data Set	Category (First 1 EOP.		Submission Date (Second Half EOP-3)	Submission Date (First Half EOP-4)	Submission Date (Second Half EOP-4)	Detailed Format Description Surface Meteorological and Radiation Format		
Surface Meteorological and Radiation Data Set			1 April 2004	1 October 2004	1 April 2005			
Flux Data Set	Category 2 1 July 2004		1 January 2005	1 July 2005	1 January 2006	Flux Format		
Soil Temperature and Soil Moisture Data Set	Category 1	1 October 2003	1 April 2004	1 October 2004	1 April 2005	Soil Temperature and Soil Moisture Format		
Meteorological Tower Data Set	Category 1	1 October 2003	1 April 2004	1 October 2004	1 April 2005	Meteorological Tower Format		



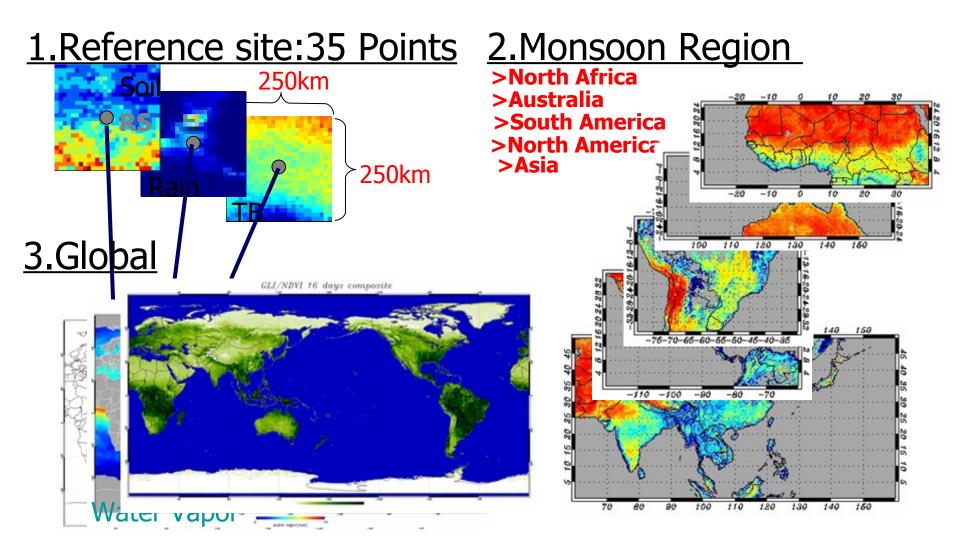

Reference Site EOP-3/4 Data Flow


EXAMPLE OF CALIBRATION DRIFT

EOL Quality Control of Dropsonde Data



NCAR/EOL Atmospheric Sounding Processing Procedures



3 Types scale of Satellite datasets

http://www.eol.ucar.edu/ projects/ceop/dm/

Coordinated Enhanced Observing Period Data Management

INTEGRATED

CEOP Data Access

Integrated Data Servers

WTF-CEOP Distributed Data Integration Prototype System CEOP Centralized Data Integration System GCMD CEOP Portal

In-Situ

Data Sets

CEOP EOP-3/4 Data Sets CEOP EOP-1 Data Sets NASA/GMAO GrADS/DODS Server Baseline Surface Radiation Network (BSRN) GEWEX Land Processes Database Map Server IAEA Global Network of Isotopes in Precipitation

Information

CEOP Reference Site Data Set Procedures Report CEOP Reference Site Station Characteristics Virtual Tour of Reference Sites Slideshow CEOP Reference Site Map CEOP Hydrology Reference Sites Reference Site Data Management Update (GEWEX SSG) Meeting, 20-24 January 2003) CEOP In-Situ Data Source Agency Links

Satellite

Data Sets

NASA/GMAO GRADS/DODS ISCCP Surface T and Cloud Amount for CEOP EOP1 NOAA CLASS Archive TRMM Online Visualization and Analysis System

Information

CEOP Satellite Data Source Agency Links

Model

Data Sets and Information

Model Output and Information

EOP-1 Satellite Data Sets

CEOP Documentation

Data Policies

CEOP Reference Sites Data Release Guidelines BALTEX

CAMP

AMMA

GAPP LBA.

MAGS

Data Standards Information

CEOP Metatdata Design (Proposed)

National Spatial Data Infrastructure (NSDI) Presentation (September 2004)

Assistance for Land-surface Modelling activities (ALMA) Atmospheric Model Intercomparison Project (AMIP) ISO/TC 211

Documents

CEOP Implementation Plan

3rd Implementation Planning Meeting Report (March 2004) **Executive Summary**

Appendices

2nd Implementation Planning Meeting Report(July 2003)

WESP Major Activities Plan (1 June 2003)

Establishment of a Global Hydrological Observation Network for Climate" GCOS/GTOS/HWRP Meeting Report

(June 2000)

Questionnaires

CEOP Land Cover and Soils Questionnaire Responses

CEOP Frozen Precipitation Questionnaire Responses

CEOP Reference Site Rawinsonde Station Responses

Other Links

CEOP Home Page WCRP Home Page

GEWEX Home Page CLIVAR Home Page

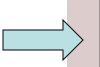
CLiC Home Page

ACSYS Home Page

Global Modeling and Assimilation Office (NASA/GSFC)

Land Information System (NASA/GSFC)

Model Parameter Estimation Experiment (MOPEX)


NASA/Goddard Institute for Space Studies (GISS) Data International Atomic Energy Agency (IAEA)

IAEA Isotope Hydrology Section

EOL work supported by NOAA/CPO

MODEL

SATELLITE

IN-SITU

SOME *IN-SITU* DATA NETWORK LESSONS LEARNED FROM CEOP.....

- Start Small with a few well organized and committed sites
- Balance science and "reality" into site selection
- Establish a workable detailed data policy early on
- Inventory sites → Good complete metadata a MUST
- Improved interoperability between data centers → data lag
- •Will encounter numerous data quality problems and issues
- Large level of additional effort required by sites
- Establish standardized procedures and good coordination

The importance of Quality Assurance in Data Management!

