Data analysis, data fusion and uncertainty evaluation

Alistair Forbes

Mathematical and Scientific Computing Group

National Physical Laboratory, Teddington, UK

GRUAN, 28th February 2008, Lindenberg (c) Crown Copyright

Traceability and uncertainty evaluation

Traceability: express measurement results in terms of standard units

Measurement result: value and associated uncertainty

Mutual Recognition Arrangement (MRA): interoperability of measurement systems, database of laboratory capabilities

Metrology community: GUM *Guide to expression of uncertainty in measure*ment ISO 1995

Uncertainty expressed in terms of probability distributions, value = distribution mean, uncertainty = distribution standard deviation.

Build up uncertainty of measurement in terms of uncertainties associated with influence quantities

Well characterised systems: physics, sensor behaviour, environment.

Testing community

ISO 5725 (1995) Accuracy (trueness and precision) of measurement methods

Trueness: expected difference between measurement value and 'true' value

Precision: expected spread of results

Repeatability conditions: minimise the effect of influence factors

Reproducibility conditions: maximise the effect of influence factors (lab, instrument, operator, environment, ...)

Sensor characterisation and sensor use

Intercomparison exercises: validate uncertainty budgets — characterise measurement systems

Data fusion and reconciliation

Primary data fusion: need different sensors in order to determine system parameter values

Secondary data fusion: use multiple measurements to reduce uncertainties, provide validation, diagnostic information

Data fusion algorithms: use sensor characterisation/uncertainties to guide fusion algorithms, provide uncertainties associated with system parameters (maximum likelihood estimation)

Correlation due to common systematic effects

Heterogeneous sampling with respect to location, time

Hybrid sensor systems: potentially provide uncertainties much lower than any component sensor (e.g., calibration)

Use data redundancy to indentify (early) poorly performing components: effective redundancy and network vulnerability, are discrepencies explainable by natural variation, sensor uncertainties

Use data redundancy to improve sensor characterisation (re-analysis): validation — characterisation

Experimental design

Many issues: location, time, sensors, analysis methods, budget

Maximise the information gain: reduce uncertainties

Minimise decision costs, risks associated with incorrect inferences

Use economic model to balance measurement costs and decision costs: measurement costs scale with $1/\text{uncertainty}^2$, decision costs scale with 1/uncertainty

Two types of experiment: measurement system characterisation, climate monitoring

Measurement system characterision: maximise opportunity for influence quantities to affect the result (variable timings, locations)

Climate monitoring: minimise ... (fixed timings, locations, but include special campaigns to provide validation, reduce risks)

Nested measurement strategies: combine regular, coarse grids with more random subgrids

(Unwelcome) heterogeneous measurement strategies forced by constraints, instrument operation

