

Atmospheric Radiation Measurement Program Value Added Products

Jennifer Comstock
Pacific Northwest National Laboratory

Value Added Products (VAPs)

- ➤ Procedure or algorithm that adds critical value to existing ARM data
 - > Calibration
 - > Cloud boundaries from radar/lidar data
 - > Assess instrument performance
 - > "Best Estimate" of retrieved quantity
 - Provide quality, calibrated measurements
 - Supply users with derived geophysical properties not easily obtained

http://www.arm.gov/data/vaps_all.php

VAP Categories

- > Geophysical quantities unavailable by direct means
 - Cloud boundaries; microphysical properties; heating rates
 - Continuous thermodynamic profiles (MERGESONDE)
- > Apply corrections or calibrations to input data
 - Lidar backscatter profiles (overlap, deadtime, after-pulse)
 - QC Rad quality control on surface radiometer measurements
- > Perform comparisons of geophysical quantities
 - Quality Measurement Experiment (QME)
 - Measurement Model intercomparisons
- > Best Estimate of geophysical quantity
 - Shortwave and Longwave Surface Flux
 - Aerosol Best Estimate (extinction profiles, optical depth)

Total VAPs in production or development: 47

- 26 "autonomous"
- 11 manual operation
- 10 both autonomous and manual aspects

Derive New Geophysical Quantity: Merged Sounding

Atmospheric Radiation Measurement

- ➤ <u>Purpose</u>: To Derive Continuous Thermodynamic Profiles
- ➤ <u>Observations</u>: radiosonde profiles, MWR, surface met.
- > ECMWF model output
- Applies a sophisticated scaling and interpolation scheme to produce profiles of T, P, RH, Winds
 - 1 minute resolution
 - 266 altitude levels

Apply Corrections or Calibrations: Corrected Lidar Profiles

- ➤ <u>Purpose</u>: Derive lidar normalized backscatter coefficient from raw photon counts
- > Apply Corrections
 - Afterpulse
 - Range-square
 - Deadtime
 - Overlap
- > Detect cloud boundaries
- ➤ Identify attenuated lidar beam

Cloud Modeling Best Estimate

- ➤ <u>Purpose</u>: Provide a best estimate of 10 select ARM datastreams including:
 - > Cloud fraction
 - > Surface fluxes
 - Cloud cover derived from lidar/radar + TSI
 - > LWP/PWV
- ➤ Compiles data from several VAPs
- ➤ Tailored for global climate model evaluation
- ➤ Averaged over 1 hour intervals at the 5 primary ARM sites

Time, UTC

Comparisons of Geophysical Quantities: QME AERI-LBL

- ➤ <u>Purpose</u>: To compare observed and calculated longwave downwelling radiances
 - AERI $(3.3 18 \mu m)$
 - Line-by-line radiative transfer model (LBLRTM)
- ➤ Originally performed for clear sky conditions
- ➤ Identified issues with spectral models used in radiative transfer

Measurement – Model Difference

VAPs Provide Consistency between Datastreams: Shortwave Pyranometers

Atmospheric Radiation Measurement

- ➤ Energy loss due to IR emission identified in Standard Eppley Pyranometers caused a bias in SW diffuse measurement of 20-30%
- ➤ Eppley model 8-48 "Black and White" found resistant to IR loss
- ➤ ARM Replaced original pyranometers with "Black and White" version
- ➤ Developed SW Diffuse Correction VAP to correct archived data and provide consistency with new technology (Dutton et al. 2001)

Surface Diffuse Irradiance

From Dutton et al. JTECH (2001)

VAPs Provide Consistency between Datastreams: Shortwave Pyranometers

- ➤ During development of "Diff Corr" VAP, bimodal behavior of IR Loss discovered
- ➤ IR Loss occurs during both day and night
- ➤ Full corrections developed to compensate for bimodal behavior

Extra Slides

VAP Development Cycle

VAP idea proposed to Working Group

WG/Translator prioritize VAPS

2. Planning

Programmatic prioritization

Allocation of resources

5. Production

Manual or Auto.
Operations
VAP output stored
in the archive

Translator

Developer

3. Development

Beta-Test & Initial Docs

Science Team

Developer

"Evaluation Release of VAPs"

Finalize Documentation Web Page