

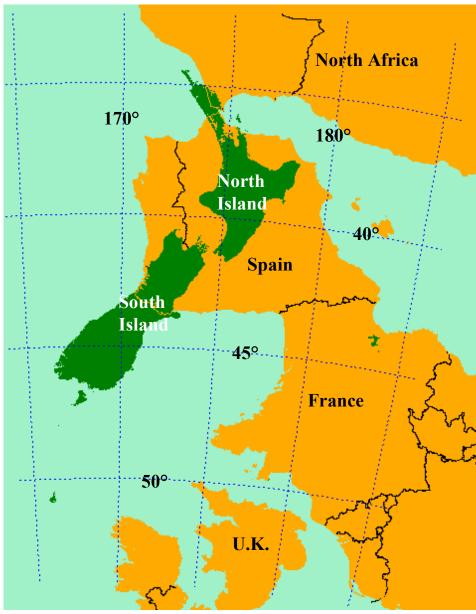
NIWA's Lauder Site

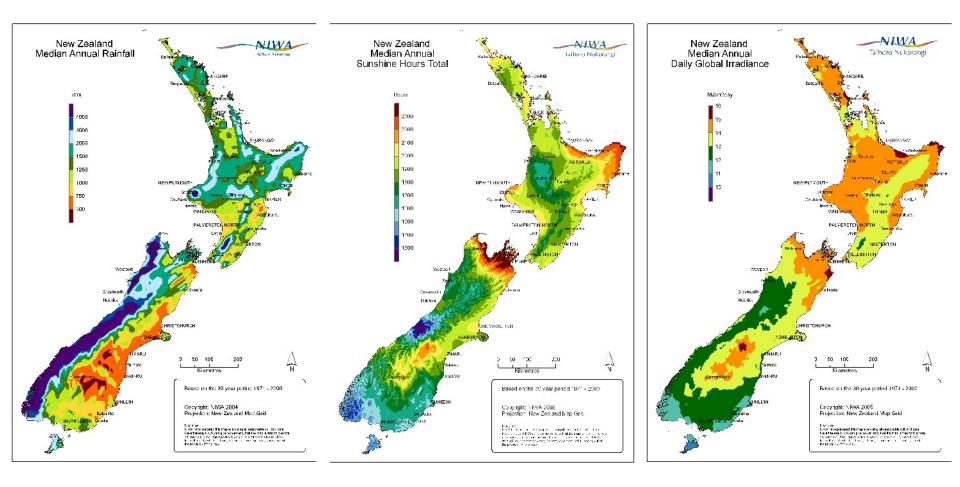
45.0°S, 169.7°E 370m a.s.l.

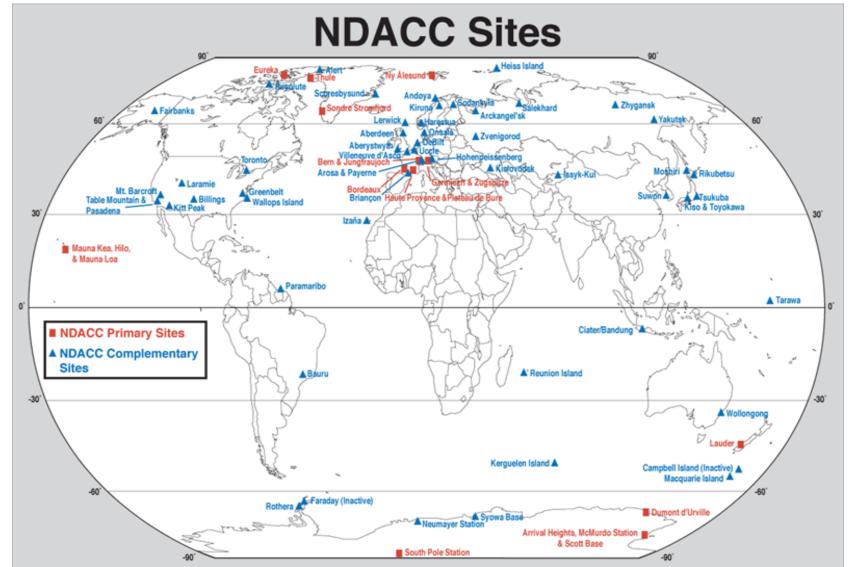

"Lauder Within the NDACC" – we will look at:

- 1. Location Geography and Climate
- 2. NDACC Measurements
- 3. Links with GRUAN goals:
 - Measurements
 - Climate Modelling
 - Research Outputs

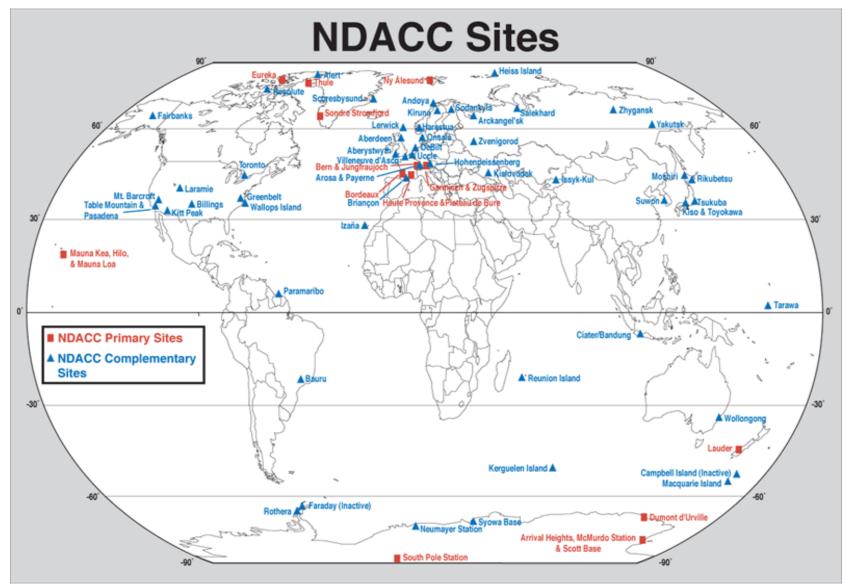
New Zealand, a small country close to Australia and Antarctica




McKenzie et al., JGR 103, D22, pp28,785-28,792, 1998. Image from J Descloitres, MODIS Rapid Response Team at NASA GSFC, as published in NIWAClimate Update No. 50


New Zealand and its Antipodes

The international Network for the Detection of Stratospheric Change (NDSC) was formed to provide a consistent, standardised set of longterm measurements of atmospheric trace gases, particles, and physical parameters via a suite of globally distributed sites.



N-LV/A

Taihoro Nukurangi

The international Network for the Detection of Atmospheric Composition Change was established to provide a consistent, standardised set of long term measurements of atmospheric trace gases, particles, and physical parameters via a suite of globally distributed sites.

The primary NDACC instruments and measurements are:

•Ozone Sondes and Dobson/Brewer (Profiles to > 30km & total column ozone)

- •Ozone lidar (vertical profiles of ozone from the tropopause to at least 40 km altitude; in some cases tropospheric ozone will also be measured)
- •Temperature lidar (vertical profiles of temperature from about 30 to 80 km)
- •Aerosol lidar (vertical profiles of aerosol optical depth in the lower stratosphere)
- •Water vapor lidar (vertical profiles of water vapor in the lower stratosphere)
- •Ozone microwave (vertical profiles of stratospheric ozone from 20 to 70 km)
- •H₂O microwave (vertical profiles water vapor from about 20 to 80 km)
- •CIO microwave (vertical profiles of CLO from about 25 to 45 km, dep. on latitude)
- •Ultraviolet/Visible spectrograph (column abundance of ozone, NO₂, and, at some latitudes, OClO and BrO)
- •Spectral UV Radiometer (irradiances to track effects of Atmospheric Change)
- •Fourier Transform Infrared spectrometer (column abundances of a broad range of species including ozone, HCk, NO5-NO5, NO5, Nand HNO5) DACC

Measurements at the Lauder NDACC Station, Dec 2007

-N-I-WA

Taihoro Nukurangi

						Tumoro	nukurangi
Instrument & Period	Parameter	Cooperating Institutions	Comments	Instrument & Period	Parameter	Cooperating Institutions	Comments
Ozone Dobson/Sonde, Lauder				Ozone/Aerosol Lidars, Lauder			
Dobson Ozone 1987 Jan -	Column ozone	NOAA/GMD, Boulder, USA		Aerosol & temperature lidar.	Aerosols 5-30 km Temp.	IROE, Florence, Italy University of	Nd-YAG 532 nm, 355 nm
Balloon sonde (ECC) 1986 Aug -	Ozone, T/P, humidity and wind profiles	NOAA/GMD, Boulder, USA	Weekly throughout the year. 0 – 32 km	1993 Dec - Aerosol lidar. 1992 Nov -	30-70 km Aerosol profile 3-30 km	Lyon, France Met. Research Instit., Tsukuba, Japan	Nd-YAG 532 nm
FTIR Trace C Mid IR Interferometer	,		Ozone lidar 1994 Dec -	Ozone profiles 8-45 km	RIVM, Bilthoven, Netherlands	Excimer laser plus Raman cell	
(Bruker)	HNO ₃ , Clono ₃ , HF,		(windows in 2-12µ region). SFIT2 profiles	Microwave Radiometers, Lauder			
1990 -	CFCs, CO & GHGs			microwave	Ozone profiles	University of Massachusetts,	110 GHz and 6 hour
Total Column Carbon Observing Network, Lauder				radiometer	20-65 km	USA	integration
Near IR Interferometer (Bruker) 2003 -	Column CO ₂ , CO, CH ₄ , N ₂ O	NASA, JPL, UC, Univ. Woolongong	Total Column Carbon Netw. OCO Validation	1993 - Microwave radiometer 1994 -	H2O 40-80 km profiles	NRL, Washington DC, USA	22 GHz and 1 week integrat. times
UV-Vis Trace	UV-Vis Trace Gas Spectroscopy, Lauder			Spectral UV, Lauder			
UV-Vis DOAS spectrometers 1980 Dec -	$\begin{array}{c} \text{Column NO}_2 \\ \text{Column BrO} \\ \text{Zen (1994) +} \\ \text{Sun (2001) +} \\ \text{Off-axis (04)} \end{array}$	NOAA, Univ. Nagoya, Swedish IRF Aus. Ant. Div.	6 Lauder systems 4 O/Seas systems	UV Spectrometer 1980 & 1988 obs. 1989 Nov -	Global and scattered UV Spectral irradiance	NOAA/GMD, Boulder, USA. BOM, Australia	285-450 nm 3 Lauder systems 5 O/Seas systems

NDACC Measurement Intercomparisons

A fundamental requirement of NDACC operation is involvement in regular intercomparisons of instruments and processing algorithms. These ensure measurement consistency across the global network as well as providing close interaction of experimenters from all organisations making NDACC measurements. Considerable improvements in accuracy and stability have been gained as a result.

Recent Intercomparisons by Working Group, are:

Dobson: Lauder, 2001

Lidar: Ozone Lidar, Lauder, 2002

Ozone Sondes: Balloon Experiment on Standards for Ozone Sondes (BESOS), 2004

FTIR: Kiruna, ?????

UV/Visible: Andoya, Norway, 2003

Spectral UV: Table Mountain, Boulder, 2003

Ozone and Hygrometer Sonde measurements + Dobson Ozone Taihoro Nukurangi

Weekly Sonde measurements are made using two different systems on alternate weeks:

- RS92-SGP Radiosonde with ECC-1Z Ozone Sensor (1986 on). NOAA copy.
- RS80-15H Radiosonde with ECC-1Z Ozone Sensor and NOAA Frost Point Hygrometer.

Both use a GPS to record winds.

Total Column ozone is measured up to 5 times/day in clear sun conditions. The Lauder Dobson Spectrophotometer of the part of International Dobson Network run by NOAA.

Lauder Sonde with RS92-SGP and NOAA Hygrometer Specifications

Barocap silicon sensor

(GRUAN Requirements in Red)

Type:

Pressure

Wind	Туре:	Code-correlating GPS receiver, 12 channels		
	Accuracy:			
- Horizontal position		10m		
	- Vertical position	20m Vert Res. 50 m tropo 250 m strato		
	- Wind velocity	0.2m/s 0.5 m/s		
Water Vapour	Туре:	Chilled Mirror Hygrometer (NOAA)		
	Accuracy	Approx 10% 2%		
Ozone Sonde	Туре:	Coulometric, employing a electrochemical concentration cell with platinum electrodes, and a Teflon gas sampling pump		
	Estimated accuracy:	< 10% 5%		
	Noise:	< 1% of full scale		
	Sensitivity:	2 to 3 parts per billion by volume		

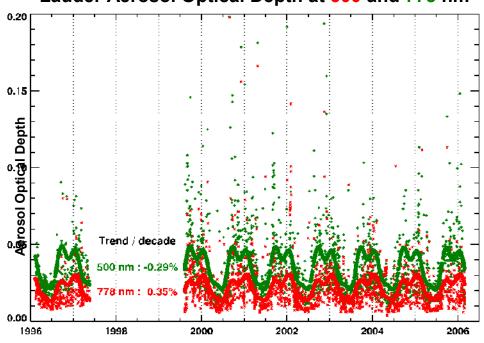
Reference Upper Air Network (GRUAN), Lindenberg, Germany, 26-28 February 2008: Lauder, New Zealand within NDACC

11055410	rype:	Burdeup sinteon sensor			
	Range:	1080 to 3 hPa			
	Resolution:	0.1 hPa 0.01 hPa			
	Total Uncertainty in Sounding ¹	1.5 hPa (1080 – 100 hPa) 0.1 hPa 0.6 hPa (100 – 3 hPa)			
	Repeatability ²	0.4 hPa (1080 – 100 hPa) 0.3 hPa (100 – 3 hPa)			
	Reproducibility ³	0.5 hPa (1080 – 100 hPa) 0.3 hPa (100 – 3 hPa)			
Temperature	Туре:	F-Thermocap capacitive wire			
	Range:	+60°C to -90°C			
	Resolution:	0.1°C			
	Accuracy:				
	Total Uncertainty in Sounding ¹	0.5°C Accuracy: 0.1°K Tropo 0.2°K Strato			
	Repeatability ²	0.15°C Long term stab: 0.05°K			
	Reproducibility ³	0.2°C (1080 – 100 hPa) 0.3°C (100 – 20 hPa) 0.5°C (20 – 3 hPa)			
	Lag:	< 0.4 s (1000 hPa) < 1 s (100 hPa)			

< 2.5 s (10 hPa)

Taihoro Nukurangi

Radiation and Aerosol Lidar


NIWA Taihoro Nukurangi

Lauder is a BSRN site in collaboration with Bureau of Meteorology, Melbourne.

•BSRN measures the downward components of solar and Thermal irradiance from a globally distributed surface based network of 35 sites.

•Ancillary BSRN data at Lauder is: meteorological observations, aerosol optical depth and Spectral UV.

•Clean atmosphere at Lauder shown in AOD record:

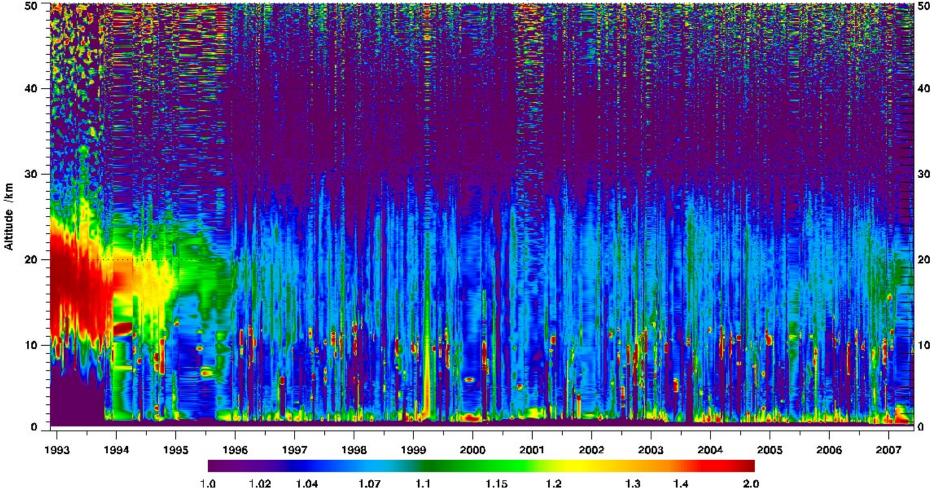


Lauder Aerosol Optical Depth at 500 and 778 nm

N-IWA Taihoro Nukurangi

Spectral UV Measurements

NIWA UV Radiometer measuring Spectral Irradiance, 285 - 450 nm. Accuracy $\pm 3\%$, traceable to NIST.


Aerosol Lidar Measurements

The results shown are from the MRI Japanese Lidar processed using algorithms developed at Lauder.

The Lauder analysed backscatter ratio is shown, interpolated between measurements.

MRI Lidar Reanalysis

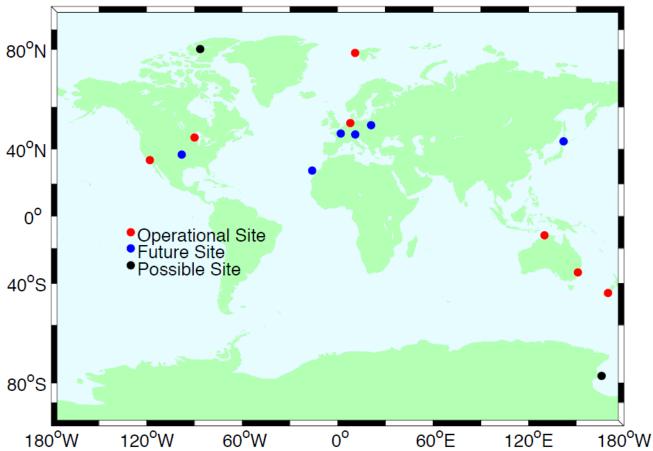
Tropospheric Carbon Column Observing Network (TCCON)

Synopsis

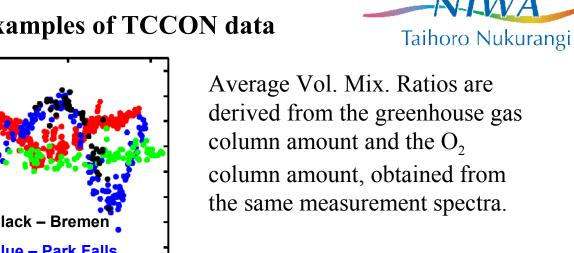
- Future climate predictions uncertain, in part because the carbon budget cannot be balanced.
- A new generation of satellite measurements (OCO, GOSAT) will be coupled with high precision, ground-based column density measurements, to determine the surface to atmosphere flux of CO₂ and CH₄.
- Carbon flux presently inferred from a network of surface measurements, interpreted within atmospheric transport models, but surface measurements alone have limited success in inferring carbon flux to the atmosphere.
- Column measurements are much less sensitive to uncertainties in vertical mixing, but respond similarly to surface flux. Thus the combination of column and surface measurements is a powerful constraint on model transport, and enables confident determination of flux.
- Satellite column measurements complement ground-based observations by providing dense global coverage.
- Measurement and modeling capabilities have now advanced to the point that it is possible to exploit this synergy between surface, column, and satellite measurements.

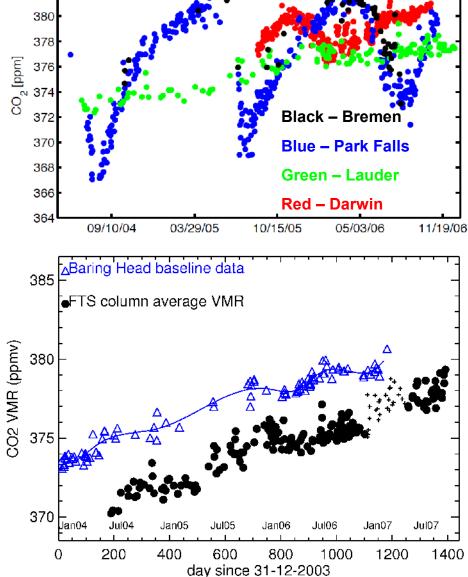
•Hi-resolution FTS in near-IR solar absorption making precision column measurements of CO₂, CH₄, CO & N₂O.

•Continuous in-situ measurements of CO₂ at all sites.


•Continuous in-situ measurements of CH₄, CO, N₂O at selected sites (Lauder, Darwin, others TBD).

•An in-situ precision CO₂ analyser (Licor 7000) will be installed at Lauder soon. Reference Upper Air Network (GRUAN), Lindenberg, Germany, 26-28 February 2008: I

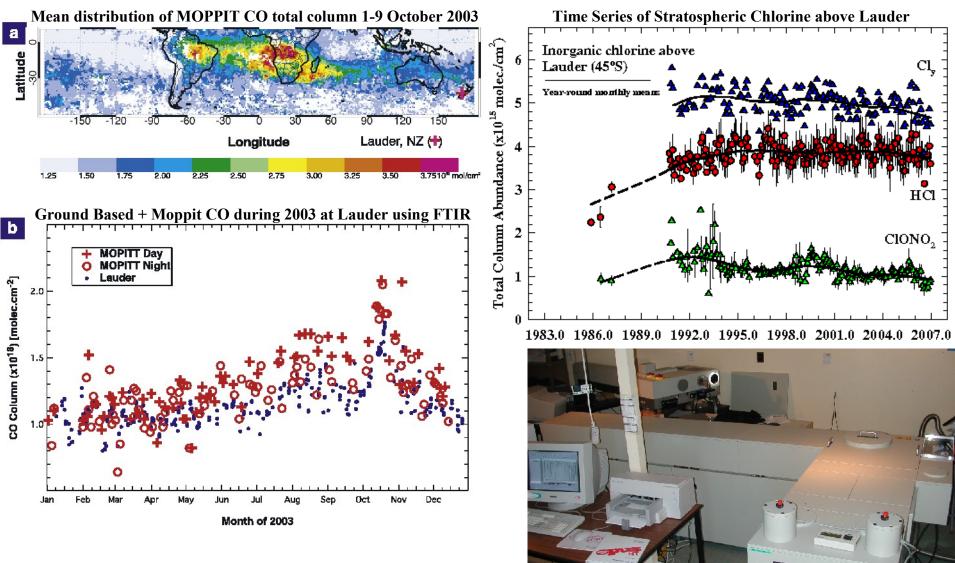

Total Carbon Column Observing Network (TCCON) Sites


Operational

Bremen, Germany
Ny-Alesund, Norway
Wollongong, Australia
Darwin, Australia
Lauder, New Zealand
Park Falls, Wisconsin, USA
CIT, Pasadena, USA

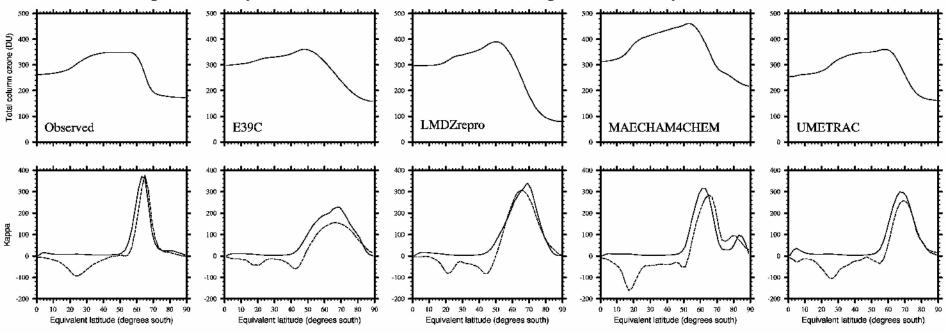
Examples of TCCON data

The daily average CO_2 precision is ≤ 0.6 ppm.



384

382


Reference Upper Air Network (GRUAN), Lindenberg, Germany, 26-28 February 2008: Lauder, New Zealand within NDACC

Taihoro Nukurangi Examples of the use of Mid-IR FT-Spectroscopy to measure atmospheric composition at Lauder and Validate Satellite measurements

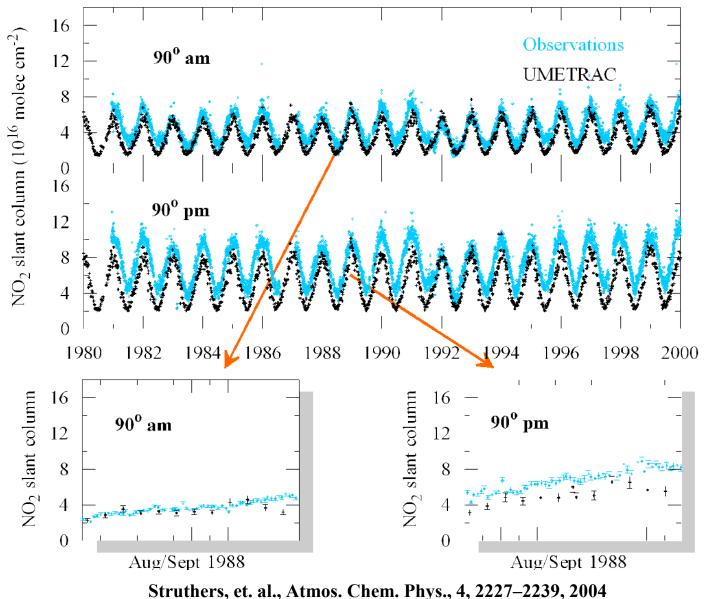
Coupled Chemistry Climate Modelling at Lauder

Taihoro Nukurangi Comparison of equivalent latitude zonal mean ozone total column and meridional impermebility from observations and four coupled chemistry-climate models.

Top plots shows the sharp gradients at the edge of the ozone hole. Solid line in the bottom plots = kappa (meridional impermeability). [Kappa is a diagnostic of the strength of the dynamical mixing barrier.]

Dashed lines = the negative of the total column ozone gradient. The bottom plots demonstrate that:

- (b) there is a narrow mixing barrier at the edge of the polar vortex. All the models produce kappa peaks that are too wide and generally a little too weak.
- (b) Gradients in total column ozone are strongly correlated with kappa (both in the real atmosphere and in models).
- (c) The models representation of the ozone gradients at the edge of the polar vortex are too weak and this is strongly related to the modelling of dynamics at the vortex edge.


Reference Upper Air Network (GRUAN), Lindenberg, Germany, 26-28 February 2008: Lauder, New Zealand within NDACC

EMETRAC: Unified Model with Eulerian Transport and Chemistry

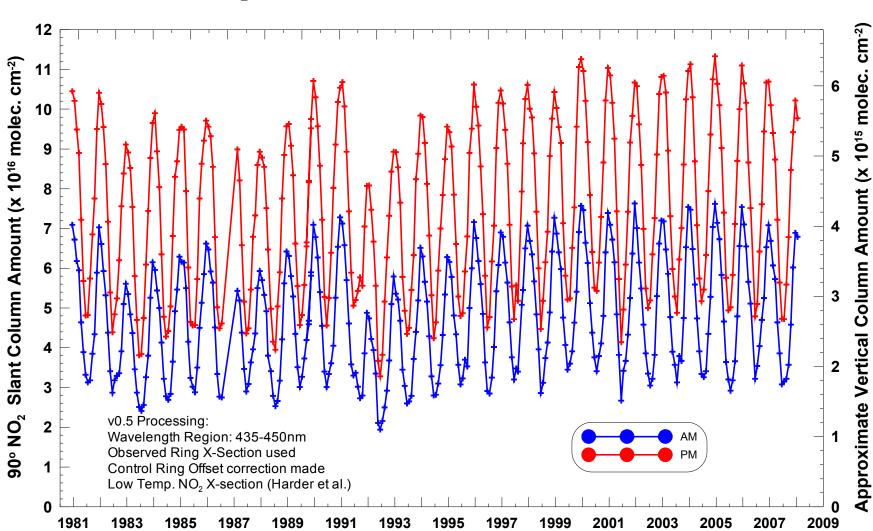
Measured NO₂ v CCM (Unified Model with Eulerian Transport and Chemistry)

Lauder Staff

Scientists: 8

Engineers/Technicians: 6

Administration/Computing: 2


Students: typically 2 PhD students + 2 overseas students gaining practical experience.

Published Research Papers 2003-2007

Lauder First Author: 26

Lauder Co-Author: 91

YEAR

LONG TERM NO₂ MEASUREMENTS OVER LAUDER, NZ (45° S, 170° E)

M:..LdrAvg.GRF

Atmos. Chem. Phys., 4, 2227–2239, 2004 www.atmos-chem-phys.org/acp/4/2227/ SRef-ID: 1680-7324/acp/2004-4-2227 European Geosciences Union

Taihoro Nukurangi

Past and future simulations of NO₂ from a coupled chemistry-climate model in comparison with observations

H. Struthers¹, K. Kreher¹, J. Austin², R. Schofield³, G. Bodeker¹, P. Johnston¹, H. Shions¹, and A. Thomas¹

¹National Institute of Water and Atmospheric Research, Private Bag 50061, Omakau, New Zealand.

²Geophysical Fluid Dynamics Lab., Princeton Forrestal Campus Rie.1, 201 Forrestal Rd., Princeton, NJ 08542-0308, USA ³NOAA Aeronomy Laboratory, 325 Broadway, R/AL& Boulder CO 80305, USA

Received: 8 June 2004 – Published in Atmos. Chem. Phys. Discuss.: 20 August 2004 Revised: 15 November 2004 – Accepted: 15 November 2004 – Published: 22 November 2004

Abstract. Trends in NO2 derived from a 45 year integration of a chemistry-climate model (CCM) run have been compared with ground-based NO2 measurements at Lauder (45° S) and Arrival Heights (78° S). Observed trends in NO2 at both sites exceed the modelled trends in N₂O, the primary source gas for stratospheric NO2. This suggests that the processes driving the NO2 trend are not solely dictated by changes in N₂O but are coupled to global atmospheric change, either chemically or dynamically or both. If CCMs are to accurately estimate future changes in ozone, it is important that they comprehensively include all processes affecting NO_x (NO+NO₂) because NO_x concentrations are an important factor affecting ozone concentrations. Comparison of measured and modelled NO2 trends is a sensitive test of the degree to which these processes are incorporated in the CCM used here. At Lauder the 1980-2000 CCM NO2 trends (4.2% per decade at sunrise, 3.8% per decade at sunset) are lower than the observed trends (6.5% per decade at sunrise, 6.0% per decade at sunset) but not significantly different at the 20 level. Large variability in both the model and measurement data from Arrival Heights makes trend analysis of the data difficult. CCM predictions (2001-2019) of NO₇ at Lauder and Arrival Heights show significant reductions in the rate of increase of NO2 compared with the previous 20 years (1980-2000). The model results indicate that the partitioning of oxides of nitrogen changes with time and is influenced by both chemical forcing and circulation changes.

Correspondence to: H. Struthers (h.struthers@hiwa.co.nz)

1 Introduction

It has been recognised for some time that the reactive species NO₈ are important in the altitude range from approximately 20km to 35km in determining the concentration of stratospheric ozone (Crutzen, 1970). NO₈ destroys ozone through the catalytic cycle shown in Reactions (1) and (2).

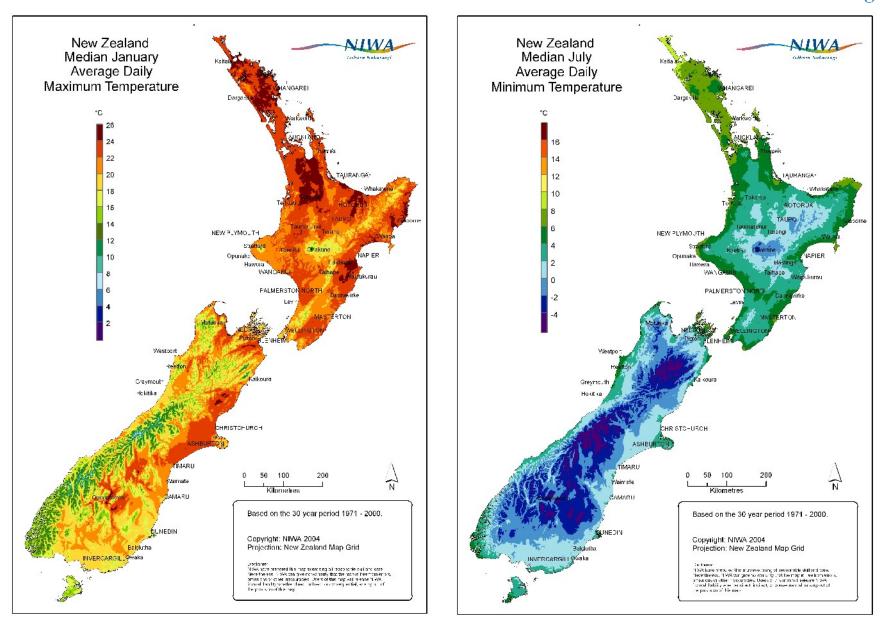
$$NO + O_3 \rightarrow NO_2 + O_2$$
 (1)
 $NO_2 + O \rightarrow NO + O_2$ (2)
(net) $O_3 + O \rightarrow 2 O_2$ (3)

In the lower stratosphere (approximately 10 km to 20 km) the most significant influence of NO₂ is its interaction with the ClO₂ and BrO₂ ozone loss cycles via the formation of reservoir species ClONO₂ and BrONO₂. NO₂ also reacts with OH (Eq. 4), reducing the HO₃ concentration and thus inhibiting the HO₃ catalysed destruction of ozone.

$$NO_2 + OH + M \rightarrow HNO_3 + M.$$
 (4)

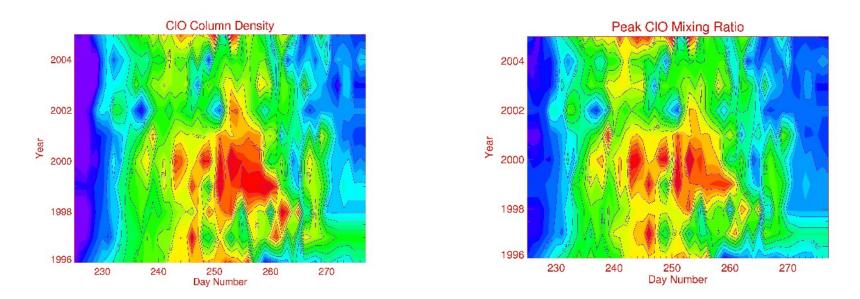
Oxidation of N₂O (Reaction (5)) is the major source of stratospheric NO₂ (NO+NO₂ +NO₃+HNO₃+2N₂O₅+HNO₄+CIONO₂+BrONO₂) and hence NO₂ (Minschwener et al., 1993).

$$N_2O + O(^3D) \rightarrow 2NO.$$
 (5)


 N_2O concentrations are predicted to continue to increase over the coming century due to anthropogenic surface emissions, mostly attributed to agricultural nitrogen fixation (IPCC, 2001; WMO, 1999). Trends in the concentration of atmospheric N_2O for the period 1980 to 1988 have been estimated to be $+0.25\pm0.05\%$ per year (IPCC (2001), p253). Zander et al. (1994) quote a trend in N_2O of $+0.33\pm0.04$ %

© 2004 Author(s). This work is licensed under a Creative Commons License.

NIWA Taihoro Nukurangi


Instrument & Period	Parameter	Cooperating Institutions	Comments
Dobson Ozone 1987 -	Column ozone	NOAA/GMD, Boulder, USA	Direct sun obs. Winter moon obs. (when visible)
IR Interferometer (Bomem FTIR) 1992 - 96 (Bruker FTIR) 1997 -	Column HCl, HNO ₃ , ClONO ₃ , HF, CFCs, CO & GHGs, etc	University of Denver, Denver, USA	Mid-IR (windows in 2-12µ region). SFIT2 profiles
UV-Vis DOAS spectrometersColumn NO2 21982 -Column OCIO Column BrO Column ozone0ff-Axis BrO		University of Heidelberg	340-490 nm Halogens start 1993, Off-axis 1998.
ClO ClO microwave radiometer 1996 -		SUNY, Stony Brook, New York, USA	278 GHz and 1 Day integration time

Lauder Measurements at the Antarctic NDACC Station, Dec 2007

ClO Time Series, 1996-2005. Measured with the Stonybrook Microwave Radiometer at Scott Base

Contour plots of column density and peak mixing ratio vs. year and day of year

The Figures below show CIO column density and peak mixing ratio as a function of time, with day of year on the x-axis and year on the y-axis. The maximum values of CIO occur during the period of days 240-260, and the onset of CIO is less variable than its annual decline. The multi-year record shows that the highest values of CIO occurred in 1999-2000, that values were consistently low in 2002-2004, but rebounded significantly in 2005. In addition, there is a hint of the annual decline occurring earlier over the course of the 10 years.

The peak mixing ratio plot shows essentially the same features as the column density.

