

Effect of solar radiation on radiosonde temperature sensors

Christoph von Rohden

GRUAN Lead Centre, DWD

9th GRUAN Implementation and Coordination Meeting (ICM-9) Helsinki, Finland June 2017

Effect of direct irradiation, dual flight, 180°-setup, raw

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- T-difference (raw), oscillations by direct component of solar irradiation, orientation-dependent
- Amplitude depends on: irradiation, SEA, air density; angle of sensor boom, specific sensor properties (response)

Measurements, MOL radiation chamber

- Up to 3 test radiosondes-
- Shadow reference sonde (p, T)
- Perpendicular irradiation of **sensor boom** with sunlight \rightarrow maximum ΔT (thermal equilibrium)
- Controlled parameters:

<u>Irradiance</u> I_a : (200–1000) W·m⁻², $u(I_a) = 2$ % (direct sun and grey filters, pyrheliometer)

- <u>Pressure</u> p: (3–1020) hPa, <u>u(p) =0.3 hPa</u> (shadow sonde)
- <u>Ventilation</u> v: (0–10) m·s⁻¹, u(v) < 1 m·s⁻¹ (related to fan voltage)
 - → Evaluation of data 2012-2016 for several radiosonde models

Measurement data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ead Centre

Measurement data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ead Centre

Step response

C. von Rohden – ICM9 – Helsinki

Centre

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Estimating maximum *T*-response

- ΔT as maximal effect in thermal equilibrium
- fit exp. data using 5 parameters: T_{∞} , T_a , τ_s , τ_l , r (τ_s fixed), separate for "up" and "down" parts

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM9 – Helsinki

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Centre

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ad Centre

Effect of direct irradiation 180° setup - details

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Lower frequency oscillations ("slow" part of radiation response → rotation?
 → similar in amplitude for both sondes
- Short peaks ("quick" part, τ_s) on top of slower osc. → pendulum motion?
 → more pronounced for RS92 (thinner sensor element)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ad Centre

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ad Centre

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM9 – Helsinki

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM9 – Helsinki

ad Centre

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM9 – Helsinki

ad Centre

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

C. von Rohden – ICM9 – Helsinki

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Deutscher Wetterdienst Wetter und Klima aus einer Hand

• Experiment: Maximum effect ΔT (p = 10 hPa, v = 5 m·s⁻¹, $I_a = 1000$ W·m⁻²):

Sonde	RS92	RS41	M10	DFM-09
$\Delta T_{ m max}$ / K	2.80	0.89	1.51	1.76

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

Experimental data \rightarrow radiation correction

- Approach for *T*-correction:
 - Calculate average "geometry"-factor f_{geo} (SEA, boom angle) (next slide) 1)
 - 2) Reduce **direct** component of solar radiation *I* (from rad. model) by f_{rec} :

$$I = I_{\text{diffuse}} + f_{\text{geo}} \cdot I_{\text{direc}}$$

3) Calculate radiation correction:

$$\Delta T = a \cdot \left(\frac{I}{p^{j} \cdot v^{k}}\right)^{b}$$

Assumptions:

- same response characteristic for diffuse or direct radiation
- heating by **diffuse** radiation independent of orientation
- same behavior for upper and lower side of sensor boom
- longwave radiation effects not considered

Sensor boom orientation

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

DWI

C. von Rohden – ICM9 – Helsinki

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

23

90

Average orientation of sensor boomDeutscher Wetterdienst Wetter und Klima aus einer Hand

• Correction of direct component of irradiance ("geometry" factor, f_{geo})

Results daytime radiation correction

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Results daytime radiation correction

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Comparison *T*-difference RS41-RS92, raw data

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- 2 x RS41, 2 x RS92, 3 flights, booms pointing in the same direct.
- Difference T(RS41) T(RS92)
 → different sensitivity to radiation
- Measured raw *T* -diff. << difference of corrections from experiments
- → inconsistency of experiment-based Corrections (?)

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

- Resilient experimental data sets for ΔT for several sonde models
- Extended empirical parameterization for better fit model

$$\Delta T = a \left(\frac{I_a}{p^j \cdot v^k} \right)^k$$

Results for maximum effect, thermal equilibrium: $(p = 10 \text{ hPa}, v = 5 \text{ m} \cdot \text{s}^{-1}, I_a = 1000 \text{ W} \cdot \text{m}^{-2})$

Sonde	RS92	RS41	M10	DFM-09
$\Delta T_{ m max}$ / K	2.80	0.89	1.51	1.76

Correction model: Use experimental parameterization $\Delta T(I, p, v)$, reduced by "geometry" factor f_{geo} for direct component of solar irradiation

Conclusions / Outlook

- <u>RS41:</u> correction comparable to Vaisala
- <u>RS92</u>: correction comparable to Vaisala for *p* > 100 hPa; for *p* < 100 hPa overestimation (?)
- How to explain:
 - large exp. T-response \rightarrow large RS92-correction
 - RS92-RS41 mismatch (?)
- Further deficiencies / disregarded effects with experimental setup (?)
 - → Check validity of "geometry" factor f_{geo} by measuring *T* effect in chamber as function of sensor orientation
 - → Statistical analyses: consistency of radiation correction from daytime nighttime comparisons dual soundings with different sondes
 - \rightarrow More measurements at low p and high I

Thanks for your attention

Measurements: Ventilation *v*

- Measurement of chamber air velocity field using LDA (Laser Doppler Anemometry)
- Parameterization with p and fan voltage U_{fan} : $v = f(p) \cdot U_{\text{fan}}$

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

ad Centre

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

ISOLDE Lindenberg/DWD

Fri Jun 9 10:12:11 2017

Ralf Becker, MOL-RAO Lindenberg