Characterization of radiosonde temperature biases in the upper troposphere and lower stratosphere using RO data: Assessment of Vaisala RS92, GRUAN RS92, and RS41

**Shu-peng Ben Ho and Liang Peng** 

UCAR/COSMIC

ICM-9 June 13, 2017

## **Motivation:**

Can we use RO data to identify uncertainty of stratospheric temperature trends from satellite data and radiosondes ?

#### **Challenges and Objective**

-Radiosonde sensor characteristics can be affected by the changing environment, its measurement accuracy varies considerably in times and locations for different sensor types

- Changes with instrument types

-Using RO temperature profiles to identify temperature biases from radiosonde, where sensor characteristics vary considerably in times and locations for different sensor types

#### **Outlines :**

- Approaches
- Results, global, time series, trends
- Conclusions and Future Work



Dian J. Seidel et al., Stratospheric temperature trends: our evolving understanding, *WIREs: Clim Change* 2010.

Shu-peng Ben Ho, UCAR/COSMIC

# Outlines

- 1. Identify global RAOB temperature biases in the UTLS using RO data
- 2. Characterize RS92 and RS41 RAOB temperature biases using RO data

# 1. Identify global RAOB temperature biases in the UTLS using RO data

## RO data for climate research

- Measure of time delay: no calibration is needed
- Requires no first guess sounding
- Not affect by clouds
- Uniform spatial/temporal coverage
- High precision (<0.05K) (Ho et al., TAO, 2009)
- Insensitive to clouds and precipitation
- No mission dependent bias (Ho et al., TAO, 2009)
- Reasonable structural uncertainty among data processed from different centers (Ho et al., JGR, 2009, 2012)
- Short term RAOB vs. RO comparison (He et al., 2009; Sun et al., 2011, 2013)

Occultation Locations for COSMIC, 6 S/C, 6 Planes, 24 Hrs



Using FM3-FM4 pairs in early mission



**Approach:** Using COSMIC and Metop-A reprocessed data from 2006 to 2015 to assess the quality of radiosonde data





Radiosodne data DS353.4 from NCAR - originally acquired from NCEP.

- contains the original data values transmitted by stations

- no radiative or other corrections from NCEP are included in this dataset He et al., (2009 GRL)

| Region | Sonde Type | Matched<br>Sample |
|--------|------------|-------------------|
| Russia | AVK-MRZ    | 2000 (20%)        |
| China  | Shang      | 650 (6.1%)        |
| USA    | VIZ-B2     | 600 (5.9%)        |
| Others | Vaisala    | 3140 (30%)        |

Collocate COSMIC/Metop-A/-B and radiosonde profiles < 200 km < 3 hrs

### Check the accuracy of the RO temperature

RS 92 vs. COSMIC derived temperature profiles in 2007



**Ho, S.-P.**, Ying-Hwa Kuo, William Schreiner, Xinjia Zhou (2010), Using SI-traceable Global Positioning System Radio Occultation Measurements for Climate Monitoring [In "States of the Climate in 2009]. *Bul. Amer. Meteor. Sci.*, **91** (7).

#### Day time and night time



#### Day time



#### Night time





## Using RO data to Identify Diurnal variation of Radiosonde Temperature Anomalies







## Using RO data to Identify Diurnal variation of Radiosonde Temperature Anomalies





## The RS92 temperature biases over different countries may vary depending on when and how the radiative corrections are applied.





## Using RO data to identify Inter-seasonal Temperature Biases Vailsala RS92







## Using RO data to Identify Inter-seasonal Temperature Biases





**Ho, S. -P.**, L. Peng, and H. Voemel, 2017: Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A/GRAS data from 2006 to 2014. *Atmospheric Chemistry and Physics*, **17**, 4493-4511, doi:10.5194/acp-17-4493-2017.

# 2. Characterize GRUAN RS92 and RS41 RAOB temperature biases using RO data





#### Daytime

Night time











## **Conclusions and Future Work**



• Geo-location independent COSMIC RO data are useful to assess the quality of radiosonde temperature in the higher troposphere and lower stratosphere

• These results suggest that COSMIC temperature observations are extremely useful as benchmark observations for differentiating radiosonde temperature errors resulting from instrument characteristics and identifying the variation of inter-seasonal biases.

• MRZ (RUSSIA) contains warm temperature bias during the day but seems consistent with RO temperature during the night

COSMIC-2 is coming

