

Initial results on comparisons of dual soundings in RS92 -> RS41 transition

Alessandro Fassò - University of Bergamo, Italy

ICM9 - Helsinki, 13 June 2017

Do we have an universal formula for harmonizing Vaisala transition ?

Some initial facts about RS41-RS92 difference understanding:

- 1. Use of GDP measurement uncertainty
- 2. Role of vertical correlation
- 3. Bias assessment using heteroskedastic local polynomial least squares.
- 4. Bias adjustment and harmonization

Dataset of dual soundings (DS)

	co-loc #	from	to	Processor
Lindenberg	198	2014-12	2016-12	GDP
Payern	69	2015-02	2016-03	GDP
Ny Alesund	64	2015-03	2016-12	GDP
Lauder	56	2015-11	2016-11	EDT

Only stations with more than 20 DS', years 2015-2016

Seasonality of DS campaign

୬ ବ. ୯ 4 / 28

э

T mismatch

tch q misma

larmonization 7

Conclusions

Seasonality of T difference

ch q misma

Harmonization

Conclusions

Seasonality of RH difference

T

Modelling of bias

To assess RS41-RS92 difference bias of T&q at each altitude we assume that

bias = E (measurement difference local conditions)

and

• bias is a smooth function of altitude (h) and,

・ロ ・ ・ 一 ・ ・ 注 ト ・ 注 ・ 注 ・ つ Q (** 7 / 28

7 / 28

Modelling of bias

To assess RS41-RS92 difference bias of T&q at each altitude we assume that

bias = E (measurement difference local conditions)

and

- bias is a smooth function of altitude (h) and,
- a locally-linear function of solar elevation angle (SEA) :

 $b(h) = \alpha(h) + \beta(h) SEA(h)$

Modelling of bias

To assess RS41-RS92 difference bias of T&q at each altitude we assume that

bias = E (measurement difference local conditions)

and

- bias is a smooth function of altitude (h) and,
- a locally-linear function of solar elevation angle (SEA) :

$$b(h) = \alpha(h) + \beta(h) SEA(h)$$

• No assumptions about smoothness of measurements are made.

Using uncertainty of GDP

• Having detailed measurement uncertainties is not only important from metrological point of view but it is also important for data analysis, either climate & trend analysis or measurement and networks quality understanding.

Using uncertainty of GDP

- Having detailed measurement uncertainties is not only important from metrological point of view but it is also important for data analysis, either climate & trend analysis or measurement and networks quality understanding.
- In practice we move

from simple average $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ to weighted average $\bar{y}_w = \frac{1}{u_{TOT}^{-1}} \sum_{i=1}^{n} y_i u_i^{-1}$

In fact if $Var(y_i) = u_i^2$, \bar{y}_w is the optimal estimator of $E(y_i)$.

Using uncertainty of GDP

- Having detailed measurement uncertainties is not only important from metrological point of view but it is also important for data analysis, either climate & trend analysis or measurement and networks quality understanding.
- In practice we move

from simple average $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ to weighted average $\bar{y}_w = \frac{1}{u_{TOT}^{-1}} \sum_{i=1}^{n} y_i u_i^{-1}$

In fact if $Var(y_i) = u_i^2$, \bar{y}_w is the optimal estimator of $E(y_i)$.

• Some results in the following pictures ...

Methods

For each site, bias at altitude h is denoted by b(h) and is obtained by minimizing

$$\sum_{i,j} \left(y_{i,j} - b\left(h\right) \right)^2 K_{\lambda} \left(h_i - h\right) \omega_{ij}$$

where

j = 1, ..., N (# of co-locations) $i = 1, ..., n_j$ (# of measurements of co-location j) h_i = altitude of measurement $y_{i,j}$ K = Gaussian kernel with bandwidth λ ($\lambda = 100m$) $\omega \propto uncertainty^{-1}$ Vertical correlation taken into account in IC's of α and β

Vertical correlation not taken into account in averaging and/or estimation

About vertical correlation

Figure: Lindenberg RH-difference vertical correlation. Left: short range. Right: long range.

Introduction	Methods	Vertical correlation	T mismatch	q mismatch	Harmonization	Т	q	Conclusions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

Temperature mismatch (1/2)

Figure: Lindenberg (Left) and Ny Alesund (Right) RS41-RS92 difference. SEA impact in red.

Temperature mismatch (2/2)

Figure: Lauder (Left) and Payerne (Right) RS41-RS92 difference. SEA impact in red.

Introduction	Methods	Vertical correlation	T mismatch	q mismatch	Harmonization	Т	q	Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Humidity mismatch (1/2)

Figure: Lindenberg (Left) and Ny Alesund (Right) RS41-RS92 difference. SEA impact in red.

Humidity mismatch (2/2)

Figure: Lauder (Left) and Payerne (Right) RS41-RS92 difference. SEA impact in red.

Introduction	Methods	Vertical correlation	T mismatch	q mismatch	Harmonization	Т	q	Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Harmonization

• Local (in situ) bias reduction using in situ DS data.

Harmonization

- Local (in situ) bias reduction using in situ DS data.
- Global bias reduction using a "sufficiently representative" DS network

Harmonization

- Local (in situ) bias reduction using in situ DS data.
- Global bias reduction using a "sufficiently representative" DS network
- Local "out of situ" bias reduction ?

• The dataset for each single site is randomly divided in two parts:

- The dataset for each single site is randomly divided in two parts:
 - 1. Estimation dataset (70%)

- The dataset for each single site is randomly divided in two parts:
 - 1. Estimation dataset (70%)
 - 2. Validation dataset (30%)

- The dataset for each single site is randomly divided in two parts:
 - 1. Estimation dataset (70%)
 - 2. Validation dataset (30%)
- The above SEA model is estimated on the first and applied to the second one

q mismatch

Harmonizat

q Conclusio

Temperature Harmonization Lindenberg valid. data

q mismatch

Harmonizat

q Conclusion

Temperature Harmonization Payerne valid. data

q mismatch

Harmonizat

q Conclusion

Temperature Harmonization Ny Alesund valid. data

Conclusions

т

Is Seasonality filtered out ?

Figure: Monthly averages for differences of harmonized data.

Introduction

Conclusi

α

RH Harmonization Lindenberg valid. data

Introduction

n qmisma

Harmonizat

⊤ q

Conclusions

RH Harmonization Payerne valid. data

Introduction

Harmonizatio

q Con

RH Harmonization Ny Alesund valid. data

• Daily transition bias may be estimated in situ using 50-150 DS:

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce

イロン イロン イヨン イヨン 三日

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:
 - 1. Seasonal understanding \longleftarrow more data.!!

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:
 - 1. Seasonal understanding \longleftarrow more data.!!
 - 2. Considering global bias reduction \Leftarrow more data.!!

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:
 - 1. Seasonal understanding \Leftarrow more data.!!
 - 2. Considering global bias reduction \Leftarrow more data.!!
 - 3. Understanding spatial variation to consider an approach for Local "out of situ" bias reduction.

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:
 - 1. Seasonal understanding \Leftarrow more data.!!
 - 2. Considering global bias reduction \Leftarrow more data.!!
 - 3. Understanding spatial variation to consider an approach for Local "out of situ" bias reduction.
 - 4. Considering additional covariates (era-interim ?)

- Daily transition bias may be estimated in situ using 50-150 DS:
 - T: bias is larger UTLS and during the day
 - RH: bias is larger in lower atmosphere and in summer.
- Harmonization is possible in-situ provided a representative network of DS is available:
 - T: Relevant bias reduction may be achived
 - Q: the bias is already small and difficult to further reduce
- Further study and data are required for:
 - 1. Seasonal understanding \Leftarrow more data.!!
 - 2. Considering global bias reduction \Leftarrow more data.!!
 - 3. Understanding spatial variation to consider an approach for Local "out of situ" bias reduction.
 - 4. Considering additional covariates (era-interim ?)
 - 5. Considering a model "local" in state instead or in addition to altitude.

THANKS FOR YOUR ATTENTION