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Outline

• ATOMMS 22 & 183 GHz RO overview & polar 
concept

• Spectroscopy of 183 GHz H2O absorption line

• Low latitude water vapor structural 
uncertainty & implications
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Active Temperature Ozone and 
Moisture Microwave Spectrometer

• Satellite to satellite occultations concept

• Operating near 22 & 183 GHz water vapor 
absorption lines

• Fly low power transmitters and receivers on each 
ATOMMS satellite 
• ~$5M per satellite including launch
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22 & 183 GHz RO ACTIVE Spectrometer
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RO geometry: Transmit & Receive
22 GHz            &           183 GHz

• Profiles  speed of light (like GPS RO)   &   
attenuation of light (unlike GPS RO)

 Profiles H2O vapor, temperature & pressure 
versus height simultaneously, unlike GPS RO    

in clear & cloudy air,   over land & water

 Also O3, NO2, water isotopes, cloud LWC, 
LoS winds above 10 mb

RO:  Self calibrating, no drift

Resolution:     ~100 m vertical, ~50 km horiz.

H2O vapor:      < 3% precision, < 1% accuracy   

Temperature:  0.4K precision, < 0.05 K accuracy 

• Profiles of turbulence from orbit

22&183 GHz 
RO
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Profiling:  ATOMMS vs. IR

IR:       Smoothed temperature to 1 km and water vapor to 2 km

ATOMMS: Resolves vertical structure of temperature, stability, water 
vapor, clouds 
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Build Up ATOMMS 
Constellation Gradually
Begin with ATOMMS 4-6 satellite 
constellation focused on the poles:  

 250-500 ATOMMS occ/day over the 
poles 

 + GNSS RO: 10K-15Kocc/day

• $25M-$35M including launch

Then build up much larger ATOMMS 
constellation over time

• # of ATOMMS occultations increases 
as square of # of satellites

Could have initial constellation up in 
2 years
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ATOMMS Spectroscopy

• Spectroscopy issue: why we care

• ATOMMS ground data set

• New ATOMMS processing

• Comparison of new ATOMMS results with 
spectroscopic models
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183 GHz Problem: Brogniez et al. (2016)

• Inconsistencies between Observations & RT calculations
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Calculated opacity is 
smaller than observed
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ATOMMS Near-Surface 
Water Vapor Measurements

In orbital occultation geometry, 

• Normalizing signal amplitudes are 
measured in vacuum above the 
atmosphere immediately before (or after) 
each occultation

In fixed geometry on Earth, 

• No vacuum normalization period like in an 
occultation

 Normalize to selected reference period 
that includes atmospheric absorption

 Desire rapid, large step changes in 
water vapor advected across the beam 
path.
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First ATOMMS Measurements
• Fixed geometry measurements across 

800 m path 

• Disagreement with Liebe et al. 1993 
model line shape

• Agreement with AM 6.2 model to 
0.3% RMS (prev. uncertainty was 2%)
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More ATOMMS Water Vapor Near-Surface 
Measurements

• 5.4 km Mountaintop to Mountaintop Measurements 
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Spectroscopic problem 
farther from line center?

• Kursinski et al., 2016 (SPIE)
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Preliminary re-processed ATOMMS results

• w
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12.6 mb

Low side 
spectroscopic 
bias?

2%

AMS 9.2
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Spectroscopic bias in water vapor amount
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AM7.2: 12.9 mb
AM9.2: 12.5 mb

= 3% difference
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Measurements to Distinguish Between Models
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Structural Uncertainty of 
Radiance-Derived

Low Latitude Water Vapor

Do observations provide the information 
needed to answer key climate questions?
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Sherwood et al. (2014) Reduction in Climate Uncertainty?

• As climate warms, models indicate stronger mixing => dehydrates BL 

 Reduces low cloud cover  => lowers albedo => more SW absorption

• Increase in mixing  & dehydration of low-cloud layer in warmer 
climate    proportional to    mixing strength in present climate

• Evaluated model mixing against “observations” (MERRA+ERAI analyses)

 High climate sensitivity > 3◦C for CO2 doubling. 

AIRS

17



Kursinski et al.

Low Latitude Moisture
• Convection creates extremes, stretching the H2O vapor 

distribution
• Mixing & diffusion compress distribution toward its center
• Specific humidity is conserved in the absence of sources & sinks  

=> tracer
• Relative humidity important for conversion between vapor & 

condensed phases => clouds & precipitation

2000 km

16 km
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Water Vapor Histograms

• Assess NWP & climate models via GPS-derived H2O vapor
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Uncertainty of state-of-the-art estimates 
• 725 hPa specific humidity estimates

• 30N-30S 2007 annual cycle

Fractional uncertainty
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Structural Uncertainty vs ENSO Variation
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Profiling:  Sonde vs. IR

Sonde: Resolves vertical structure of temperature, stability, water vapor & cloud 
IR:         Smoothed temperature to 1 km and water vapor to 2 km 
Data assimilation: In remote regions, the hope is the NWP system will take the 

smoothed IR information and somehow recreate the fine scale of the sonde.
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Profiling:  Sonde vs. IR

Sonde: Resolves vertical structure of temperature, stability, water vapor & cloud 
IR:         Smoothed temperature to 1 km and water vapor to 2 km 
Data assimilation: In remote regions, the hope is the NWP system will take the 

smoothed IR information and somehow recreate the fine scale of the sonde.
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Radiosonde

Impossible
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Reducing Climate Model Uncertainty?

 Reducing climate model uncertainty requires 
observations with

• Much smaller structural uncertainty, 
• much higher vertical resolution, 

• direct mapping to geophysical variables

• in all weather conditions.

• Coverage: Global, remote regions 

RO has big potential to help here but much denser data is 
needed if it is to strongly “constrain” NWP analyses.
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Summary
ATOMMS

• Next gen. RO system to profile temperature & water vapor 
simultaneously (<0.1K, <1%)

• 4-6 satellite ATOMMS RO constellation great polar profiling 
system (250-500 profiles/day + 10K-15K/day GNSS RO)
• 2 year development, ~$30M

• ATOMMS is very high resolution open-air spectrometer
 Evaluating 183 GHz line spectroscopic models

Do observational systems provide the information needed to 
answer key science questions?

• Structural uncertainty of water vapor derived from radiance 
observations is too large to answer critical climate 
sensitivity questions about low level clouds.

• Dense RO should help a lot here
25GRUAN June 14, 2017



Kursinski et al.

Backup slides
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Doubly Differential Absorption Measurements

1. Self Calibration:

• Derive optical depth via 
change in signal level during occultation 

relative to 

signal level measured above the atmosphere, before or after 
each occultation

• Maintain stable signal amplitude over ~100 second 
(duration of an occultation) achieves climate quality 
stability

 No long term drift
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Doubly Differential Absorption Measurements

• 1st tone on absorption line 
• 2nd calibration tone off the line
2 tone amplitude ratio eliminates common 

mode noise
 Enables profiling in clouds & rain
 Enables profiling of cloud LWC

Differential Absorption: 2 tones

• Enables profiling in & of clouds

• Isolate and reduce or remove turbulent scintillations
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2. Use two or more simultaneous tones
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Pressure cannot explain the wing variations

• w
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Spectroscopy Summary

Spectroscopic results in Kursinski et al. (2016) were 2011 
processed ATOMMS results vs. AM 6.2 model.

Comparison of re-processed ATOMMS results with updated 
AM (7.2 & 9.2) spectroscopy models yields better line shape 
agreement.

• Suggestion of systematic error on low side of the line.

• Some correlated variation in wings

Fitting ATOMMS’ water vapor amount using the AM7.2 & 
AM9.2 models yielded 3% difference in water vapor.

 Accuracy of ATOMMS retrieved geophysical variables 
limited by spectroscopy
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ATOMMS vs. Hyperspectral IR
• Yue et al. (2013) compared AIRS water vapor retrievals with ECWMF 

by cloud type (from CloudSat)
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Bias

CRMS

ATOMMS 1% uncertainty ~the 2x linewidths     
=> Quantum improvement in information about the atmospheric state

ATOMMS

ATOMMS

Cloud type


