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Introduction

Do we have an universal formula
for harmonizing Vaisala transition 7

Some initial facts about RS41-RS92 difference understanding:

1. Use of GDP measurement uncertainty
2. Role of vertical correlation

3. Bias assessment using heteroskedastic local polynomial least
squares.

4. Bias adjustment and harmonization
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Dataset of dual soundings (DS)

co-loc # from to Processor
Lindenberg 198 2014-12 2016-12 GDP
Payern 69 2015-02 2016-03 GDP
Ny Alesund 64 2015-03 2016-12 GDP
Lauder 56 2015-11 2016-11 EDT

Only stations with more than 20 DS’, years 2015-2016
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Seasonality of DS campaign

Conclusions
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Seasonality of RH difference
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Methods

Modelling of bias

To assess RS41-RS92 difference bias of T&q at each altitude we
assume that

bias = E (measurement difference|local conditions)

and

e bias is a smooth function of altitude (h) and,

~
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Methods

Modelling of bias

To assess RS41-RS92 difference bias of T&q at each altitude we
assume that

bias = E (measurement difference|local conditions)

and

e bias is a smooth function of altitude (h) and,

e a locally-linear function of solar elevation angle (SEA) :
b(h) =« (h) + B (h) SEA(h)

e No assumptions about smoothness of measurements are made.
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Using uncertainty of GDP

e Having detailed measurement uncertainties is not only
important from metrological point of view but it is also
important for data analysis, either climate & trend analysis or
measurement and networks quality understanding.
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Using uncertainty of GDP

e Having detailed measurement uncertainties is not only
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e In practice we move
from simple average y=iy".y

to weighted average Vw = Ll:? Y y,-uf1
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Methods

Using uncertainty of GDP

Having detailed measurement uncertainties is not only
important from metrological point of view but it is also
important for data analysis, either climate & trend analysis or
measurement and networks quality understanding.

In practice we move
from simple average y=1¥1,yi
to weighted average Vw = ﬁ Y y,-uf1
In fact if Var (y;) = u,-2, Vw is the optimal estimator of E (y;).

Some results in the following pictures ...
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Methods

For each site, bias at altitude h is denoted by b (h) and is obtained
by minimizing

Z (yij — b(h)* Ky (hi — h) w;;
where "

Jj=1,..,N (# of co-locations)

i=1,...n; (# of measurements of co-location j)

h; = altitude of measurement y; ;

K = Gaussian kernel with bandwidth A (A = 100m)

w o« uncertainty 1

Vertical correlation taken into account in IC's of & and 8
Vertical correlation not taken into account in averaging and/or
estimation
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About vertical correlation

Vertical autocorr of d.RH at LIN

correlation
=
=)

delay in sec

Figure: Lindenberg RH-difference vertical correlation. Left: short range.
Right: long range.
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Temperature mismatch (1/2)

Introduction

Imil

[2]

Figure: Lindenberg (Left) and Ny Alesund (Right) RS41-RS92 difference

SEA impact in red.
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Temperature mismatch (2/2)
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Figure: Lauder (Left) and Payerne (Right) RS41-RS92 difference. SEA
impact in red.
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Humidity mismatch (1/2)

LIN 24h 12m d rh: RS41-RS52 mismatch 0 NYA 24h 12m d rh: RS41-R592 mismatch

Figure: Lindenberg (Left) and Ny Alesund (Right) RS41-RS92 difference.
SEA impact in red.
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Humidity mismatch (2/2)
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Figure: Lauder (Left) and Payerne (Right) RS41-RS92 difference. SEA
impact in red.
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Harmonization

e Local (in situ) bias reduction using in situ DS data.
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Harmonization

Harmonization

e Local (in situ) bias reduction using in situ DS data.

e Global bias reduction using a "sufficiently representative" DS
network

e Local "out of situ" bias reduction ?
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In situ harmonization

e The dataset for each single site is randomly divided in two
parts:

1. Estimation dataset (70%)
2. Validation dataset (30%)

e The above SEA model is estimated on the first and applied to
the second one

19/28
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Temperature Harmonization
Lindenberg valid. data
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Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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Temperature Harmonization
Payerne valid. data
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Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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Temperature Harmonization
Ny Alesund valid. data
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Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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Is Seasonality filtered out ?
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Figure: Monthly averages for differences of harmonized data.
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RH Harmonization
Lindenberg valid. data
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Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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RH Harmonization
Payerne valid. data

=104 PAY 24h 12m d.rh =10% Harmonized d.ri

w

gz.r = 285 4
3 5
B af 5 zf g
31.5 é—ns— 1
g g
z z

0.2

Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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RH Harmonization
Ny Alesund valid. data
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Figure: Left: differences and SEA effect in red. Right: differences after
harmonization.
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Conclusions and further development

e Daily transition bias may be estimated in situ using 50-150
DS:
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Conclusions and further development

e Daily transition bias may be estimated in situ using 50-150
DS:
e T: bias is larger UTLS and during the day
e RH: bias is larger in lower atmosphere and in summer.
e Harmonization is possible in-situ provided a representative
network of DS is available:
e T: Relevant bias reduction may be achived
e Q: the bias is already small and difficult to further reduce
e Further study and data are required for:

1. Seasonal understanding <— more data.!!

2. Considering global bias reduction <= more data.!!

3. Understanding spatial variation to consider an approach for
Local "out of situ" bias reduction.
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Conclusions and further development

e Daily transition bias may be estimated in situ using 50-150

DS:

e T: bias is larger UTLS and during the day
e RH: bias is larger in lower atmosphere and in summer.

e Harmonization is possible in-situ provided a representative
network of DS is available:

e T: Relevant bias reduction may be achived
e Q: the bias is already small and difficult to further reduce

e Further study and data are required for:

1.
2.
3.

Seasonal understanding <= more data.!!

Considering global bias reduction <= more data.!!
Understanding spatial variation to consider an approach for
Local "out of situ" bias reduction.

Considering additional covariates (era-interim ?7)

. Considering a model "local" in state instead or in addition to

altitude.
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THANKS FOR YOUR ATTENTION
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