RS biases estimation using RO

Motivation

RC

Method

Covariance matrix

RS bias correctior

Summary

A new method to correct radiosonde temperature biases using radio occultation data

$\frac{\text{Jordis Tradowsky}^{1,2,3}, \text{ Chris Burrows}^4, \text{ Sean Healy}^5, \text{ John}}{\text{Eyre}^4},$

¹Bodeker Scientific
²National Institute of Water and Atmospheric Research (NZ)
³Freie Universität Berlin
⁴Met Office
⁵European Centre for Medium-Range Weather Forecasts
EUMETSAT Radio Occultation Meteorology Satellite Application Facility

ICM-8, 25th April 2016

Motivation

RS biases estimation using RO

Motivation

- RO
- Metho
- Covariance matrix
- RS bias correction
- Summary

- RS¹ and RO² profiles are assimilated into the numerical weather forecast
 - \rightarrow anchor the temperature in the model

¹Radiosonde ²Radio Occultation

Motivation

RS biases estimation using RO

Motivation

RC

Method

Covariance matrix

RS bias correctior

Summary

• RS¹ and RO² profiles are assimilated into the numerical weather forecast

 \rightarrow anchor the temperature in the model

• Impact of high quality observations might be limited due to biases between observation types

¹Radiosonde ²Radio Occultation

Motivation

RS biases estimation using RO

Motivation

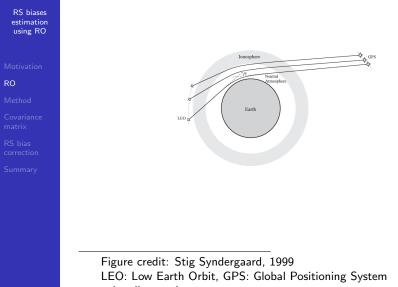
RÖ

Method

Covariance matrix

RS bias correctior

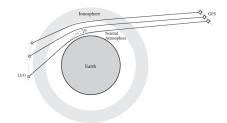
Summary


• RS¹ and RO² profiles are assimilated into the numerical weather forecast

 \rightarrow anchor the temperature in the model

- Impact of high quality observations might be limited due to biases between observation types
- Better exploitation of RO and RS possibly given a bias correction of RS before the assimilation

¹Radiosonde ²Radio Occultation


Radio Occultation

 α bending angle

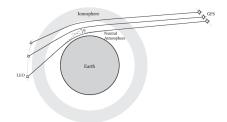
Radio Occultation

Phase shift \rightarrow bending angle \rightarrow refractivity \rightarrow (dry) temperature

Figure credit: Stig Syndergaard, 1999 LEO: Low Earth Orbit, GPS: Global Positioning System α bending angle

Radio Occultation

Motivation


RO

Metho

Covariance matrix

RS bias correction

Summary

Phase shift \rightarrow bending angle \rightarrow refractivity \rightarrow (dry) temperature \rightarrow SI traceability

Figure credit: Stig Syndergaard, 1999 LEO: Low Earth Orbit, GPS: Global Positioning System α bending angle

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

 Intention: Providing an station-by-station RS temperature bias correction on standard pressure levels
 → subdivided in four SEA³ ranges

³solar elevation angle

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correction

- Intention: Providing an station-by-station RS temperature bias correction on standard pressure levels
 → subdivided in four SEA³ ranges
- Met Office NWP system used as transfer medium \rightarrow co-locate background for each assimilated measurement \rightarrow use of departures (O-Bs) for RO and RS

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

- Intention: Providing an station-by-station RS temperature bias correction on standard pressure levels
 → subdivided in four SEA³ ranges
- Met Office NWP system used as transfer medium \rightarrow co-locate background for each assimilated measurement \rightarrow use of departures (O-Bs) for RO and RS

$$\overline{O_{RO} - O_{RS}} \simeq \overline{O_{RO} - B_{RO}} - \overline{O_{RS} - B_{RS}}$$
(1)

³solar elevation angle

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

- Intention: Providing an station-by-station RS temperature bias correction on standard pressure levels
 → subdivided in four SEA³ ranges
- Met Office NWP system used as transfer medium \rightarrow co-locate background for each assimilated measurement \rightarrow use of departures (O-Bs) for RO and RS

$$\overline{O_{RO} - O_{RS}} \simeq \overline{O_{RO} - B_{RO}} - \overline{O_{RS} - B_{RS}}$$
(1)

• Assumption: B_{RO} and B_{RS} are equally representative of true values at RO/RS locations

³solar elevation angle

RO

RS biases estimation using RO

Motivation

RÖ

Method

Covariance matrix

RS bias correctior

Summary

• All COSMIC⁴ bending angles in a 500 km circle around the site are collected (subdivided in SEA ranges)

 $^{^4 \}rm Constellation$ Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission-3

RO

RS biases estimation using RO

Motivation

RÖ

Method

Covariance matrix

RS bias correctior

- All COSMIC⁴ bending angles in a 500 km circle around the site are collected (subdivided in SEA ranges)
- Mean bending angle departures

 $^{^4 \}rm Constellation$ Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission-3

RO

RS biases estimation using RO

Motivation

RÖ

Method

Covariance matrix

RS bias correction

- All COSMIC⁴ bending angles in a 500 km circle around the site are collected (subdivided in SEA ranges)
 - Mean bending angle departures
 - NEW: tangent linear retrieval: mean bending angle departure → mean dry temperature departure

⁴Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission-3

RO

RS

RS biases estimation using RO

Motivation

RÖ

Method

Covariance matrix

RS bias correctior

- All COSMIC⁴ bending angles in a 500 km circle around the site are collected (subdivided in SEA ranges)
 - Mean bending angle departures
 - NEW: tangent linear retrieval: mean bending angle departure → mean dry temperature departure

⁴Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission-3

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

- All COSMIC⁴ bending angles in a 500 km circle around the site are collected (subdivided in SEA ranges)
 - Mean bending angle departures
 - NEW: tangent linear retrieval: mean bending angle departure → mean dry temperature departure

RS

RO

• Mean RS temperature departure calculated for each SEA range at each site

⁴Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission-3

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:

- Minimizes effects caused by mismatch⁵
 - \rightarrow standard deviations/errors are much smaller

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:

- Minimizes effects caused by mismatch⁵
 - \rightarrow standard deviations/errors are much smaller
- Determine the lowest level where humidity is negligible

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:

- Minimizes effects caused by mismatch⁵
 → standard deviations/errors are much smaller
- Determine the lowest level where humidity is negligible

Advantages of the tangent linear calculations:

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:

- Minimizes effects caused by mismatch⁵
 - \rightarrow standard deviations/errors are much smaller
- Determine the lowest level where humidity is negligible

Advantages of the tangent linear calculations:

Only use the altitude range of interest
 → set RO departures above threshold zero

RS biases estimation using RO

Motivation

RO

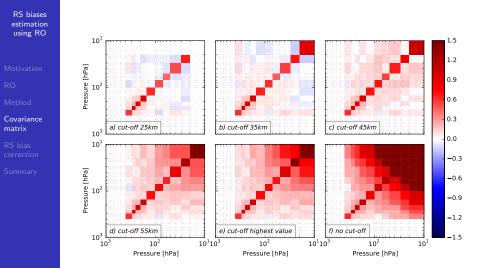
Method

Covariance matrix

RS bias correctior

Summary

Advantages of NWP system as transfer medium:


- Minimizes effects caused by mismatch⁵
 - \rightarrow standard deviations/errors are much smaller
- Determine the lowest level where humidity is negligible

Advantages of the tangent linear calculations:

- Only use the altitude range of interest
 → set RO departures above threshold zero
- Minimize the impact of a priori knowledge

⁵Sun et al, 2010,2013

Advantages of the method: Covariance matrix

Example upper-air sites

RS biases estimation using RO

Motivation

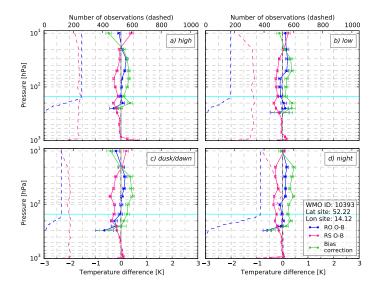
RO

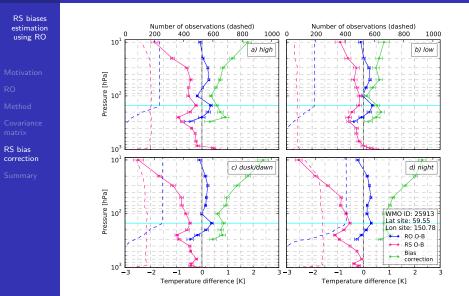
Method

Covarianco matrix

RS bias correction

Country Lat WMO ID Lon **RS** type Germany 52.22 14.12 10393 **RS92** Russia 59.55 150.78 25913 Various Russian sondes Antarctica -69.0 39.58 89532 Meisei


Lindenberg RS bias in Met Office assimilation



Russian RS bias in Met Office assimilation

Antarctic RS bias in Met Office assimilation

Covarianco matrix

RS bias correction

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correction

- A new method to calculate the RS temperature bias using RO dry temperatures is developed
 - \rightarrow tangent linear retrieval
 - \rightarrow model as transfer medium

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correction

- A new method to calculate the RS temperature bias using RO dry temperatures is developed
 - \rightarrow tangent linear retrieval
 - \rightarrow model as transfer medium
 - Bias is calculated separately for every station and SEAs

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correction

- A new method to calculate the RS temperature bias using RO dry temperatures is developed
 - \rightarrow tangent linear retrieval
 - \rightarrow model as transfer medium
 - Bias is calculated separately for every station and SEAs
 - A forecast impact study is planned

RS biases estimation using RO

Motivation

RO

Method

Covariance matrix

RS bias correctior

- A new method to calculate the RS temperature bias using RO dry temperatures is developed
 - \rightarrow tangent linear retrieval
 - \rightarrow model as transfer medium
 - Bias is calculated separately for every station and SEAs
 - A forecast impact study is planned
 - Analysis of GRUAN data is planned in next ROM SAF Visiting Scientist project

RS biases estimation using RO

Motivation

RO

Method

Covarianci matrix

RS bias correction

Summary

Thank you for your attention!

11111111100