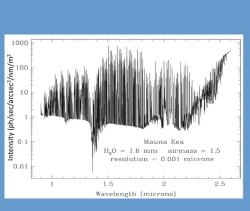
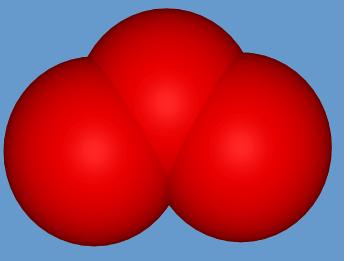
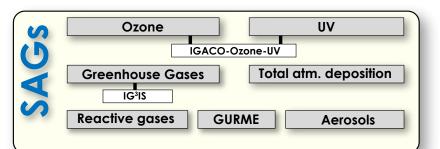

World Meteorological Organization


Working together in weather, climate and water


Links between GRUAN and GAW

Geir O. Braathen

Atmospheric Environment Research Division, Research Department, WMO



GAW observes six categories of parameters

- Stratospheric ozone (total, Umkehr, sondes)
- Greenhouse gases (CO₂, CH₄, N₂O)
- $^{\circ}$ Reactive gases $(0_3, C0, VOCs, N0_x, S0_2 etc.)$
- Aerosols
- Total Atmospheric Deposition (formerly Precip. chem.)
- Solar UV radiation

CAS Open Programme
Area Group

EPAC

Environmental Pollution &

Atmospheric Chemistry
Scientific
Steering Committee

Quality Assurance & Science Activity Centres World & Regional Calibration Centres

GHG N₂O CH₄ VOC NOAA ESRL/GMD (USA) (DE) JMA (JP)

Precip. chem. SUNY Albany (USA) SF₆

Physical aerosol properties

In situ
O₃, CO,
CH₄
EMPA (CH)

Optical depth worcc (CH)

Total O₃
3 WCC (US, CA, RU)
6 Dobson RCC
(JP, AU, ZA, AR, DE, CZ)
1 Brewer RCC (ES)

Sondes
FZJülich (DE)

Central Calibration Laboratories

Host GAW World Reference Standards

CO₂, CH₄, N₂O CO, SF₆, Dobson O₃ NOAA ESRL/GMD (USA) Brewer total O₃ Environment Canada Ozonesondes

FZJülich (DE)

In situ
O₃

NIST
(USA)

Contributing networks

TCCON EANET

emep

AERONET

BSRN

World Data Centres

WOUDC
Ozone & UV

Environment
Canada (CA)

WDCGG Greenhouse gases JMA (JP) WDCA Aerosols

NILU (NO)

WRDC Radiation WDCPC Total atm. dep.

SUNY Albany (USA)

WDC-RSAT Satellite data

DLR (DE)

GAW Report no. 201: SOPs for ozonesondes

Water vapour, the "forgotten" molecule

- Among all the compounds relevant for atmospheric chemistry, H₂O(g) has been neglected
- The GAW Programme has the responsibility for Atmospheric Chemistry in the WMO Integrated Global Observing System (WIGOS)
- In the OSCAR (Observing Systems Capability Analysis and Review Tool) database, there is a line for H₂O (intended as a chemical species relevant for atmospheric chemistry)
- Mowever, this line is essentially empty
- We need to determine the requirements for water vapour

Next step

The Scientific Steering Committee for GAW (EPAC SSC) decided to adopt water vapour as a GAW parameter. By this we mean water vapour as a chemical species relevant for atmospheric chemistry and as a greenhouse gas

The SSC also decided to establish a Task Team to review the current situation (capabilities) wrt water vapour measurements and to determine the requirements for such observations

Water vapour as a greenhouse gas

- The total greenhouse effect is 155 W/m² (Trenberth).
- H₂O is responsible for about 60% of this total greenhouse effect.
- Water vapour does not control the Earth's temperature, but is instead controlled by the temperature.
- The water vapour feedback doubles the warming effect of an increase in CO₂. If we add enough CO₂ to cause an increase of 1°C in the global mean temperature, the water vapour feedback will add another 1°C.

Water vapour as a greenhouse gas

Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming

Susan Solomon, Karen H. Rosenlof, Robert W. Portmann, John S. Daniel, Sean M. Davis, Codd J. Sanford, Gian-Kasper Plattner

Stratospheric water vapor concentrations decreased by about 10% after the year 2000. Here we show that this acted to slow the rate of increase in global surface temperature over 2000–2009 by about 25% compared to that which would have occurred due only to carbon dioxide and other greenhouse gases. More limited data suggest that stratospheric water vapor probably increased between 1980 and 2000, which would have enhanced the decadal rate of surface warming during the 1990s by about 30% as compared to estimates neglecting this change. These findings show that stratospheric water vapor is an important driver of decadal global surface climate change.

ver the past century, global average surface temperatures have warmed by about 0.75° C. Much of the warming occurred in the past half-century, over which the average decadal rate of change was about 0.13° C, largely due to anthropogenic increases in well-mixed greenhouse gases (*I*). However, the trend in global surface temperatures has been nearly flat since the late 1990s despite continuing increases in the forcing due to the sum of the well-mixed greenhouse gases (CO₂, CH₄, halocarbons, and N₂O), raising

poorly (9), and even up-to-date stratospheric chemistry-climate models do not consistently reproduce tropical tropopause minimum temperatures (10) or recently observed changes in stratospheric water vapor (11). Because of these limitations in prognostic climate model simulations, here we impose observed stratospheric water vapor changes diagnostically as a forcing for the purpose of evaluation and comparison to other climate change agents. However, in the real world, the contributions of changes in stratospheric water vapor to

Stratospheric water vapour increased between 1980 and 2000, but decreased by about 10% from 2000 to 2009.

This decrease in water vapour acted to slow the rate of increase in global surface temperature by 25% over 2000-2009

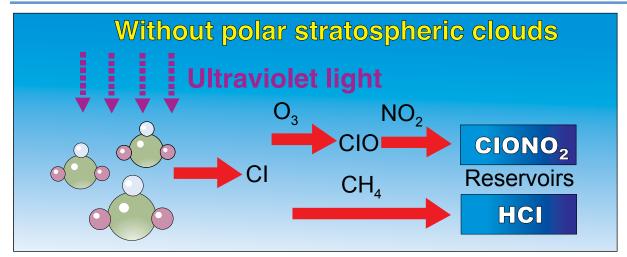
Water vapour as a chemical compound

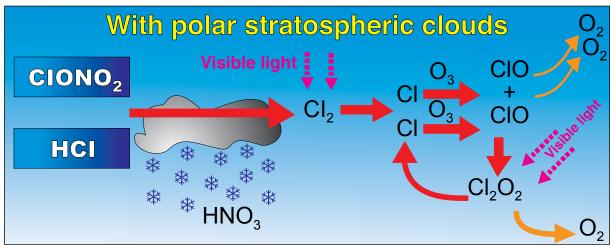
Major source of HO_x in "clean" (hydrocarbon poor) air:

$$O_3$$
 + hv (λ <340nm) $\rightarrow O_2$ + O(1 D)

$$O(^1D) + H_2O \rightarrow 2OH$$

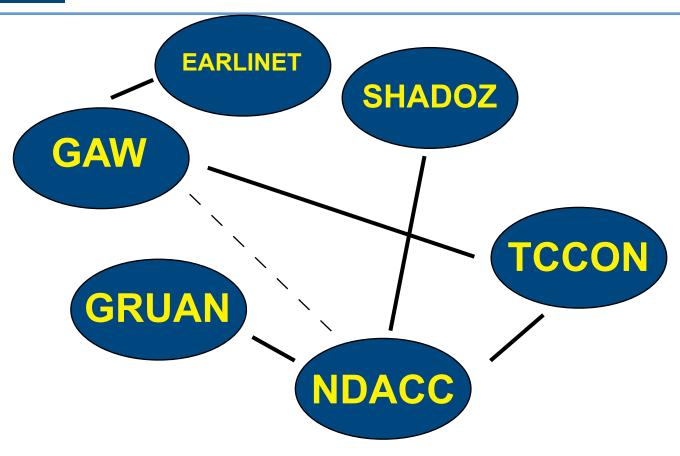
=> OH depends mainly on ozone


The same process is also the dominant loss process for ozone


This makes the ozone lifetime in the marine boundary layer dependent on:

- a. absolute concentrations of water vapour (i.e. temperature)
- b. overhead ozone

The role of water in ozone depletion



Heterogeneous chemistry on the "ice" particles in polar stratospheric clouds (PSC). The critical temperature for formation of Type 1 PSCs depends on the concentration of water vapour and HNO₃. More water vapour in the stratosphere will lead to more PSCs and more ozone depletion as long as there are **ODSs** around.

Relationships between networks

World Meteorological Organization

Working together in weather, climate and water

Thank you for your attention!

GLOBAL ATMOSPHERE WATCH