Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS)

D. Ward², A. Otarola³, J. McGhee¹, H. Reed⁴, & D. Erickson⁴

¹ Space Science & Engineering, Golden, CO
 ² University of Arizona, Tucson, AZ
 ³ Thirty Meter Telescope (TMT), Pasadena, CA
 ⁴ University of Colorado, Boulder, CO

What could you do if you were to design an RO system from scratch?

\Rightarrow **Open air spectrometer**

⇒Profiles water vapor, temperature & pressure , unlike GNSS RO, to much higher altitudes

⇒ Approaching sonde profiling from orbit in may ways

⇒Eventually LEO Constellation of ATOMMS

22 & 183 GHz RO Active Spectrometer

like GPS RO unlike GPS R

⇒ Profiles H₂O vapor, temperature & pressure versus height simultaneously, unlike GPS RO

in clear & cloudy air, over land & water

 \Rightarrow Also cloud LWC, O₃, NO₂, water isotopes, LoS winds above 10 mb & turbulence

Resolution: ~100 m vertical, ~50 km horiz.

Temperature: 0.4K precision, < 0.05 K accuracy

Doubly Differential Absorption Measurements

1. Self calibration

 Signal amplitude only has to be stable over ~100 second duration of an occultation to achieve climate quality stability

Doubly Differential Absorption Measurements

2. Use two or more simultaneous tones

- Enables profiling in clouds
- Isolate and reduce or remove turbulent scintillations

Precision of Individual Water Vapor Profiles

Fractional RMS water v apor error

Precision of Individual Temperature Profiles

Near-Surface Precision with 3, 22 & 183 GHz tones

Ground-based Prototype Instrument Results

14

all the second s

3 Field Test Geometries

Rooftop: 840 m Lemmon to Bigelow: 5.4 km Hopkins to Lemmon: 84 km

View of Mt. Lemmon from Mt. Bigelow

GRUAN ICM-7

SSE Feb 24, 2015

Mit. Hopkins

Deployed Instrument Photos

Mt Kulsinski et allon

Water Vapor Spectroscopy & Retrievals

Water Vapor Retrievals: Clear, Cloudy & Rain

- Enabled by calibration tone at 198.6 GHz
- Figures show spectrum of amplitude ratios relative to calibration tone

191.5

ATOMMS Mountaintop Results

Mtn-top retrievals

Water vapor retrievals

Example: High Latitude Profiling

Relevance: Large spread among sea ice melting predictions

- Need observations to tie down uncertainties
- Passive observations limited by vertical resolution & sensitivity to surface emissivity
- Insensitive to surface emissivity
- T, q, z(P) resolved to 100 m, 50 km horiz
 somewhat like a sonde but better accuracy
- Resolve near surface temperature & stability & moisture structure
- Liquid water cloud presence, LWC & temperature

Radiosonde profile Barrow, Alaska Fall 2012

Complement CloudSat & Calipso measurements

New Compact Instrument Design

Global Field Campaign?

• Measure atmospheric stability,

profile pressure surface

CRITICAL DATA FOR

UT humidity & temperature,

Accuracy & precision => Improve reanalyses

- Prototype instrument done & used for testing
- Next next: LEO-LEO constellation of small satellites

Challenges: funding, funding, funding

Stability (e.g. PDFs vs means)

