GPS RO Water Vapor & GRUAN

A. Kursinski¹, T. Gebhardt², C. Ao³

¹ SPACE SCIENCE & ENGINEERING, Golden, CO
² University of Colorado, Boulder, CO
³ Jet Propulsion Laboratory (JPL), Pasadena, CA

Outline

Background on GPS RO water vapor

Moisture histogram comparisons

GNSS RO Information vs. Altitude

Altitude (km)

Bending angle particularly sensitive to water vapor

- Corresponding horizontal resolution is ~70 km

Avoid super-refraction problem for now

- Reason: GPS RO sampling very sparse globally thus far

GPS RO Features Summary

- Global coverage
- Diurnal coverage with \geq 6 satellite constellation like COSMIC
- Works in clear & cloudy conditions ($\lambda \sim 20$ cm)
- Works over land & water (
- Unique relation between bending angle & refractivity (except super-N) insensitive to initial guess

- Useful to ~240 K level in troposphere
- Extends down very close to surface in extra-tropics
- If we can deal with down to the surface at low latitudes
 , profiles can extend

Zonal Mean Relative Humidity

Two Methods for Extracting Water Vapor from GPS RO Refractivity Profiles

1. Direct Method: $N_{wet} = N_{tot} - N_{dry}$

2. (1D) Variational Method

 Analysis temperature & water vapor profiles and surface pressure

Over-determined, least squares solution

Advantages of Direct Method

 Histograms of moisture on individual pressure levels provide much better indication of full range of behavior

Negative q and Error Deconvolution

Produces an unphysical, negative tail in the *q* histograms

- Linearize error model: $q_{measured} = q_{true} + \varepsilon_q$
- Measured histogram (PDF) is then the convolution of the true PDF and the error PDF

- Negative tail tells us shape of the error distribution
- Described in Kursinski & Gebhardt (2014) in JTECH

Error Deconvolution Low Latitude

(1)

(2)

• Convolve them to generate estimate of "measured" PDF,

Estimating the Accuracy of GPS-derived Water Vapor

$$\sigma_q = \left((C+q)^2 \left(\frac{\sigma_N}{N}\right)^2 + (C+2q)^2 \left(\frac{\sigma_T}{T}\right)^2 + (C+q)^2 \left(\frac{\sigma_{P_s}}{P_s}\right)^2 \right)^{1/2}$$

 $\sigma_q \sim 0.2$ g/kg in mid & upper troposphere. $\sigma_q \sim 0.4$ g/kg in lower troposphere

$$\sigma_{U} = \left[\left(B_{s} + U \right)^{2} \frac{\sigma_{N}^{2}}{N^{2}} + \left(B_{s} + U \left(2 - \frac{L}{R_{v} T} \right) \right)^{2} \frac{\sigma_{T}^{2}}{T^{2}} + B_{s}^{2} \frac{\sigma_{P}^{2}}{P^{2}} \right]^{1/2} \right]^{1/2}$$

Separating the Errors

 Resulting errors somewhat smaller than predictions of Kursinski & Hajj, 2001

	Specific Humidity Error (g/kg)		Fractional Refractivity Error (%)		Temperature Error (K)		Reference Pressure Error (%)	
Pressure level (hPa)	KH01	Error deconv	KH01	Error deconv	KH01	Error deconv	KH01	Error deconv
346	0.24	0.14	0.2	0.2	1.5K	0.85K	0.3%	0.19%
547	0.31	0.25	0.5	0.6	1.5K	0.85K	0.3%	0.19%
725	0.47	0.39	0.9	1	1.5K	0.85K	0.3%	0.19%

Constraining the GPS RO H₂O Vapor Bias

0.01 g/kg wide bins at 347 hPa => Sharp roll-off below 6th positive bin

• Suggests bias is no more than 0.03 g/kg (Kursinski & Gebhardt 2014)

Expected Relative Humidity Errors

$$\sigma_{U} = \left[\left(B_{s} + U \right)^{2} \frac{\sigma_{N}^{2}}{N^{2}} + \left(B_{s} + U \left(2 - \frac{L}{R_{v} T} \right) \right)^{2} \frac{\sigma_{T}^{2}}{T^{2}} + B_{s}^{2} \frac{\sigma_{P}^{2}}{P^{2}} \right]^{1/2} \right]^{1/2}$$

Figure shows predicted low latitude, 1-sigma errors vs. altitude & relative humidity

Relative Humidity Histogram 346 hPa

Low Latitude Moisture

• Mixing & diffusion compress distribution toward its center

tracer

clouds & precipitation

0.05 g/kg res. 346 hPa Specific Humidity 30S-30N 2007

346 hPa Low Latitude Comparison (2007)

Comparison of Estimates of Low Latitude Humidity Means

- Specific humidity: 30S-30N annual averages
- Means

	GPS	AIRS v5	ECWMF lo-res	ECMWF hi-res	MERRA	NCEP	Sat-Adv
346 mb	0.44	0.397	0.448	0.448	0.48	0.496	0.456
547 mb	2.22	2.12	2.29	2.14	2.43	1.98	2.51

Fractional Differences Relative to GPS RO

	GPS	AIRS v5	ECWMF lo-res	ECMWF hi-res	MERRA	NCEP	Sat-Adv
346 mb	0.0%	-9.1%	2.5%	2.5%	9.0%	13.5%	4.3%
547 mb	0.0%	-4.6%	3.2%	-3.6%	9.5%	-10.8%	13.1%

Lots more going on than is captured in the means

MERRA histogram shapes closest to GPS but biased high in terms of mean

Climate Model & Analysis Comparison 725 mb

- Modeled % of wet air near the peak is too high
- Models & analyses miss driest subtropical air

Vertical & Horizontal Resolution Near 725 hPa

