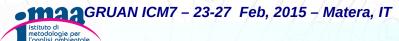
Interaction of the series of t


Towards a GRUAN MWR product

Towards a GRUAN MWR product DomeNico Cimini – CNR-IMAA, Italy

With contributions from:

Maria Cadeddu, ARM-ANL (USA) Stick Ware, Radiometrics (USA) Francisco Navas, University of Bern (Switzerland) Alexander Haefele, MeteoSwiss (Switzerland) Niklaus Kampfer, University of Bern (Switzerland) Jürgen Gülder, DWD (Germany) Bernhard Pospichal, University of Lipzig (Germany) Ulrich Löhnert, University of Köln (Germany) Harald Czekala, RPG (Germany)

Towards a GRUAN MWR product

- What's the role of MWR in GRUAN
 MWR Survey
- GRUAN MWR Program Guide
 - Status
 0 Redundancy
 - o Validation
 - o Calibration & Maintainance
 - O Data Quality management
 - o Managing changes
 - o Data Format
 - o Reference Measurement
 - o Uncertainty

Research activities in Payerne/Bern

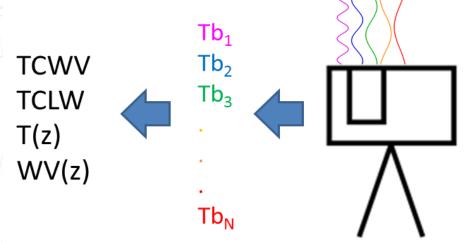
What's the value of MWR for GRUAN?

Redundant

• wrt to RS, GNSS, RL, FTIR

Continuos

Complement sondes (diurnal cycle, fine time-struct.)

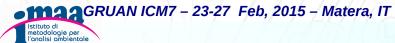

All-weather (nearly)

• Not affected by clouds, up to light precipitation

Supplementary

• TCLW (also an ECV)

GRUAN MWR instrument survey


Different instruments exists in GRUAN, providing different products

- $\ \ \square 2/3-channel \rightarrow TCWV, TCLW \qquad (e.g. Lamont)$
- $\Box WV \text{ profilers } \rightarrow TCWV, TCLW, WV(z) \qquad (e.g. Barrow)$
- □T profilers \rightarrow T(z) (e.g. Bern)

□T + WV profilers \rightarrow TCWV, TCLW, T(z) + WV(z) (Lindenberg, Beltsville, Cabaw, NyAlesund,


Payerne, Potenza, ...)

GRUAN MWR instrument survey

Site	MWR	Manufacturer	Since
Barrow, USA	T-WV profiler	Radiometrics	2007
Beltsville, USA	T-WV profiler	Radiometrics	2009
Boulder, USA	??		
Cabauw, Netherlands	T-WV profiler	RPG	2006
Darwin, Australia	??		
Lamont, USA	TCWV-TCLW	Radiometrics	1990
Lauder, New Zealand	??		
La Réunion, France	??		
Lindenberg, Germany	T-WV profiler	Radiometrics	2000
Ny-Ålesund, Norway	T-WV profiler	RPG	
Paris, France	T-WV profiler	RPG	2010
Payerne, Switzerland	T-WV profiler	RPG	
Potenza, Italy	T-WV profiler	Radiometrics	2004
Sodankylä, Finland	??		
Tateno, Japan	??		
Xilin Hot, China	??		

GRUAN MWR Program Guide

Following the GRUAN Guide (GCOS-171)

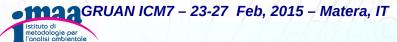
STATUS

- 1. INTRODUCTION
- 2. INSTRUMENTATION
- 3. REFERENCE MEASUREMENTS
- 4. MEASUREMENT UNCERTAINTY
- 5. MEASUREMENT SCHEDULING
- 6. DATA MANAGEMENT
- 7. POST-PROCESSING ANALYSIS & FEEDBACK
- 8. QUALITY MANAGEMENT
- 9. SITE ASSESSMENT AND CERTIFICATION

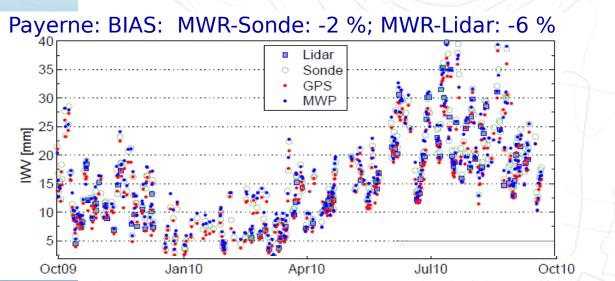
OK OK ~OK in progress in progress NYS in progress in progress NYS

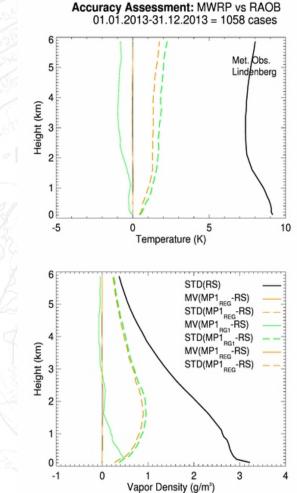
MWR redundancy

- MWR provide redundant observations (in nearly all weather) wrt:
 - RS (T(z)+WV(z), TCWV)
 - GNSS (TCWV)
 - RL (T(z)+WV(z))
 - AERI (T(z)+WV(z), TCWV, TCLW(< 100 g/m²))



Towards a GRUAN MWR product


- MWR were used to demonstrate radiosonde issues
 - RS80 "dry bias" (Turner et al., 2003)
 - VIZ-B2 / GPS Mark II "wet bias" (Mattioli et al., 2008)
- MWR show the highest redundancy with RS TCWV
 - potential to reduce the RS random uncertainty (Madonna et al. 2014)



MWR validation

- Validation of MWR measurements is done routinely at some GRUAN sites (Lindenberg, Payerne, Lamont,...)
 - \circ T(z) & WV(z) wrt to RS
 - TCWV wrt RS / GNSS / RL
 - Mean, STD, RMS differences are taken as estimates of measurement uncertainty

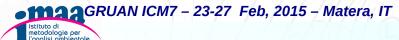
Lindenberg: Yearly assessment

MWR calibration & maintenance

Quality measurements require proper calibration and maintenance

Good example:

DARM (Liljegren, 1998; Cadeddu et al., 2013)


Automated calibration

• Consistent throughout the network

Centralized processing

• **NB:** Just for low-opacity channels

MWR calibration

MWR calibration relies on the combination of 2-3 methods:

Gain calibration

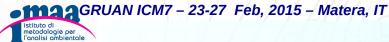
(2-4 cal points)

(1-2 cal points)

Towards a GRUAN MWR product

very frequently (secs) with noise doide sources

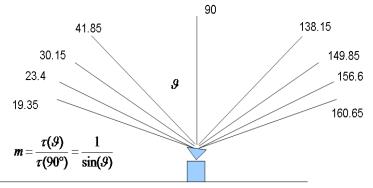
High-emissivity black-body (BB) targets
 1 or 2 external BB targets at T_{hot} and T_{cold}
 Tight temperature control


Tipping curve (aka: sky dip)
 airmass-opacity relationship

(1 cal point)

Cryogenic calibration (2)
 BB target in liquid nitrogen (LN2) cryogenic bath

(1 cal point)

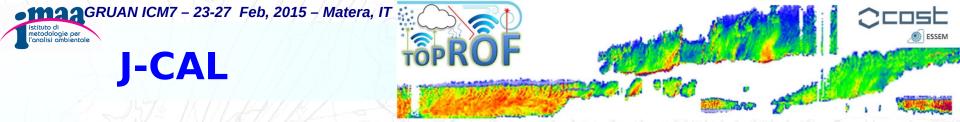


MWR calibration

Calibration poses some practical difficulties

Tipping curve

- Applicable to low-opacity channels only (e.g. 20-30 GHz)
- Side-views may be partially obstructed
- Clear-sky (not always available)

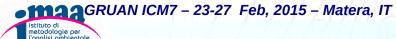

Towards a GRUAN MWR product

Cryogenic calibration

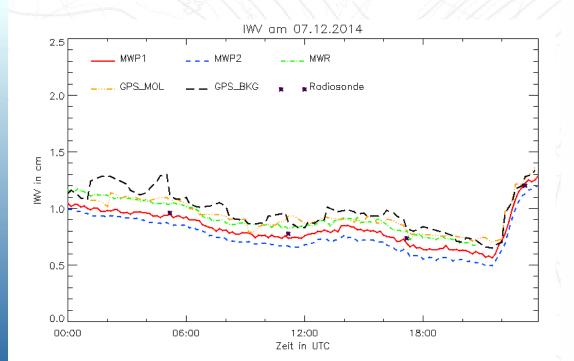
- Safety and training issues
- LN2 not easily available everywhere
- No standard procedure

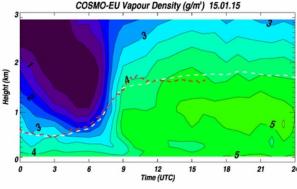
- Joint Calibration Experiment (J-CAL, Lindenberg 25-29 August 2014)
 - EU COST Action TOPROF (Towards Operational Profiling...)
 - Five MWR within 10 meters
- Objectives:
 - Develop standard protocols for optimum LN2 calibration
 - Characterize the LN2 calibration
 repeatability, stability, and random uncertainty
- J-CAL report is expected soon (Pospichal and Güldner)
- JCAL2 is scheduled for Summer 2015

MWR maintainance

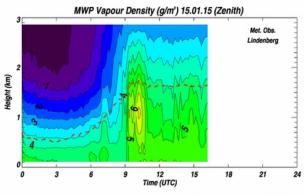

- Robust hardware, long life-time
- Need to keep liquid water off of the radome
 - Rain/dew mitigation
- Radome must be kept clean and unharmed
 - Routine services
 depending upon environment condition
 o dirt, sand, dust
 - Replacement every 6-12 months

Towards a GRUAN MWR product





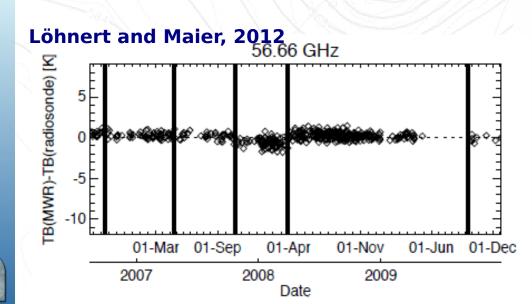
MWR data quality management

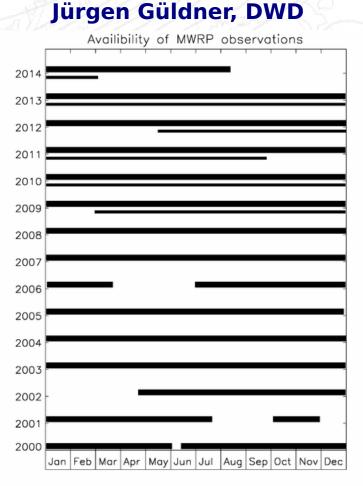

- Qualty flags are provided automatically
 - Internal sanity checks
 - Wet/dirty radome (rain sensor)

- → Metadata
- → Metadata
- Automated quality control is available at some GRUAN sites, e.g. Lindenberg wrt RS, GNSS, and model (Güldner, 2013)

- - - IWV - Integrated Water Vapour COSMO_EU (cm

- - - IWV - Integrated Water Vapour MWP(cm)

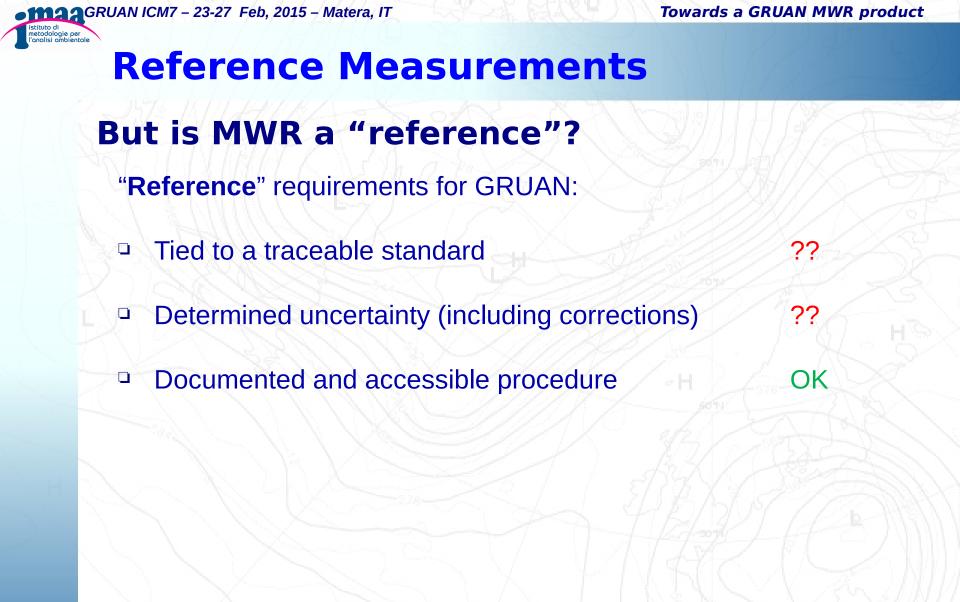



netodologie per analisi ambientale

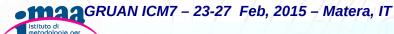
Lindenberg, courtesy of

Managing MWR change

- Tb computed from RS (Turner et al., 2007; Löhnert and Maier, 2012)
- New instruments
 - Parallel operation old+new MWR
 - ~1 year
- Environment
 - \circ side views must be clear (\rightarrow pics)
 - $^{\circ}$ RFI should be monitored (→SA?)


MWR data management

- Data format
 - NetCDF compliant with Climate and Forecast convention (discussed and agreed within MWRnet)
 - A suitable data format has been organized in the framework of the German HD(CP)2 Project
 MWR data in Cabauw and Lindenberg (as well as other non-GRUAN sites) are already processed based on this
- Metadata


0

Additional metadata need be agreed and added
 Calibration
 Operator
 Environment

G

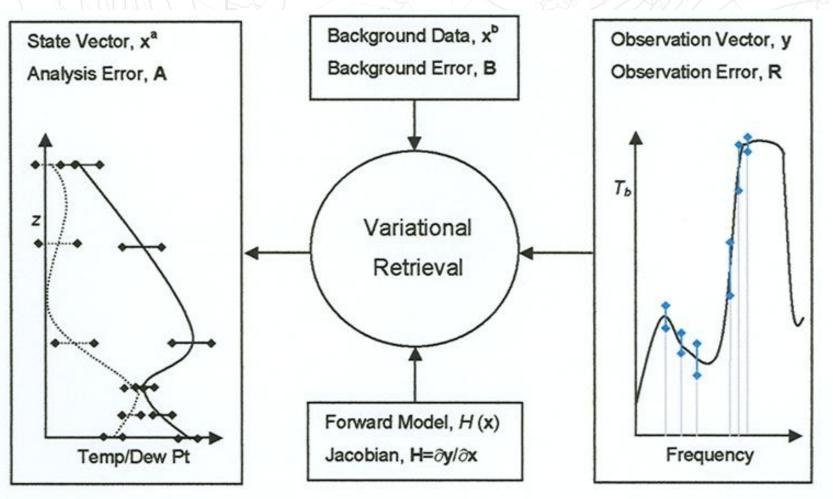
Reference Measurements

Traceability

- Calibration relies on high-emissivity black-body (BB) targets
- Two BB targets are at Cold and Warm temperatures
 Traceability is partly given by
 certified temperature measurements (Warm)
 LN2 boiling temperature (Cold)
- Currently there are no MW SI standards
 U.S. NIST is working on this (Walker, 2011; Gu et al., 2012a)
 NIST expects to be able to provide (next few years)
 O SI-traceable Tb calibration for BB targets
 O transfer standards in the form of calibrated BB targets

MWR measurement uncertainty

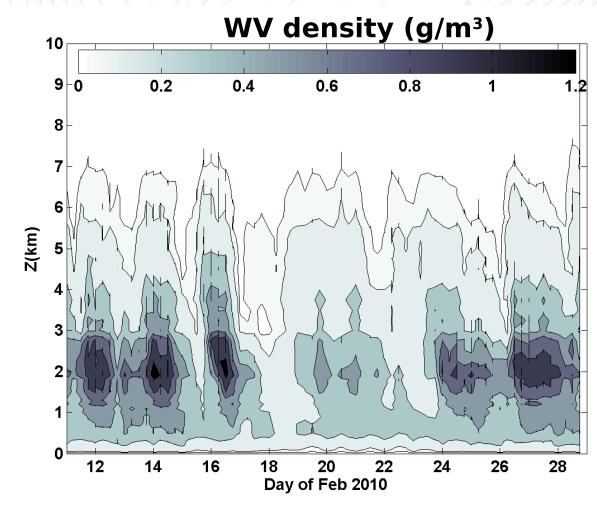
- Evaluating
 - Info are available but need to be generalized
 0 e.g. Maschwitz et al., 2013
 - Calibration uncertainties
 - Retrieval uncertainties
 A priori Inversion method
 Absorption model
 WV, Oxygen, and super-cooled water
- Reporting
 Metadata
- Validating
 - Check consistency with radiosonde



Issues to be addressed in TOPROF and GAIA-CLIM

MWR measurement uncertainty

Optimal estimation may be used to produce retrieval uncertainty



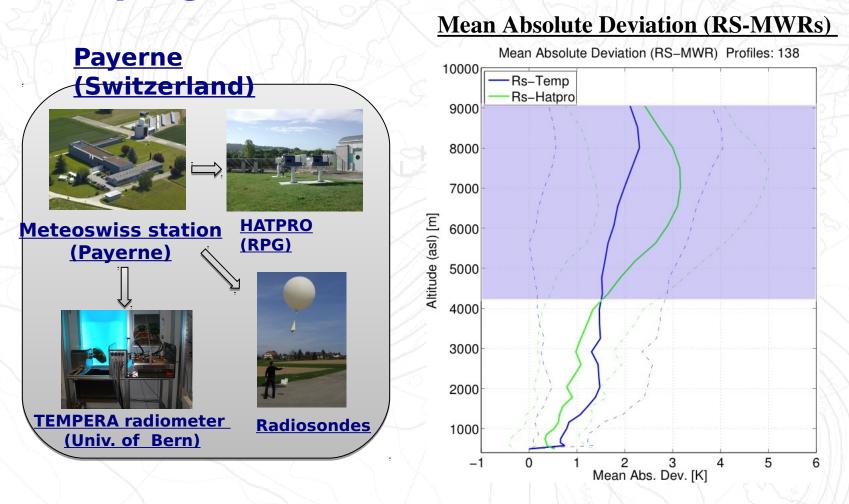
odologie per

MWR measurement uncertainty

Framework already available (Löhnert et al., 2009; Cimini et al., 2011)

• e.g. estimated uncertainty for WV retrievals

GRUAN ICM7 – 23-27 Feb, 2015 – Matera, IT

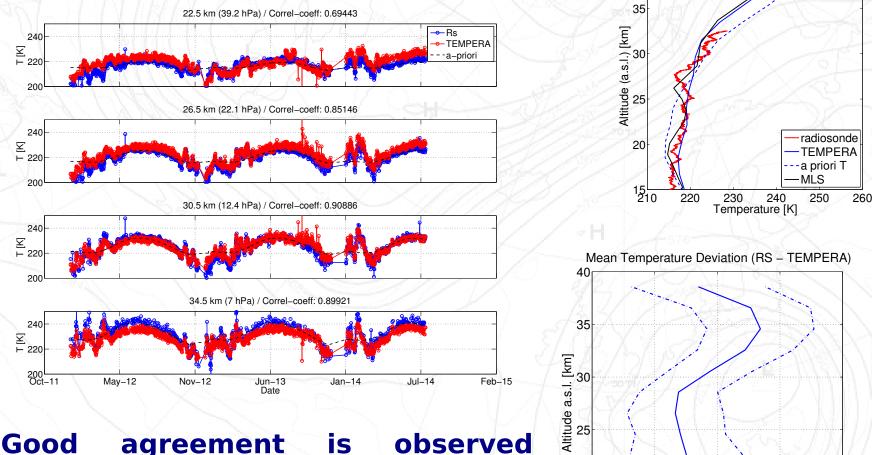

MWR activities in Payerne/Bern

- Contribution from Nik Kämpfer, Fran Navas-Guzmán (IAP-UniBern) and Alexander Haefele (MeteoSwiss)
 - Temperature intercomparison campaign
 0 RS and 2 MWR
 - Stratospheric temperature intercomparison
 o RS, GB MWR, SAT MWR



Istituto di Interestinationalisi ambientale Campaign Towards a GRUAN MWR product

intercomparison



- Very good agreement in the PBL for both radiometers (< 0.7 K)
- Better results for HATPRO in the near range (< 4 km)</p>
- > TEMPERA shows a better agreement for the far range

Stratospheric temperature profiles

20

15∟ _10

-5

Mean Temperature Deviation [K] (RS-MWR)

10

Good agreement is observed between RS, ground-based (TEMPERA) and satellite (MLS) MWR

Summary and conclusions

- MWR measurements are valuable for GRUAN
 - Redundant (T(z) & WV(z), TCWV)
 - Complementary (high temporal res., diurnal cycle)
 - Supplementary (TCLW)
- MWR uncertainty needs to be worked out properly
 GAIA-CLIM & TOPROF
- MWR treaceability needs a breakthrough
 NIST is working on that

Thank you very much for your attention!

List of Acronyms

		A STANK AND MANY AND
•	ECV	Essential Climate Variable
.	EUMETNET	European Meteorological Service Network
-	EUCOS	EUMETNET Composite Observing System
	FCDR	Fundamental Climate Data Record
	GCOS	Global Climate Observing System
	GEO	Group on Earth Observations
	GEOSS	Global Earth Observation System of Systems
	GEWEX	Global Energy and Water Vapor Experiment
	GMES	Global Monitoring for Environment and Security
	GRUAN	GCOS Reference Upper Air Network
•	G-VAP	GEWEX Water Vapor Assessment Project
à	LUAMI	Lindenberg Upper-Air Methods Intercomp. Camp.
	MWR	Microwave radiometer

