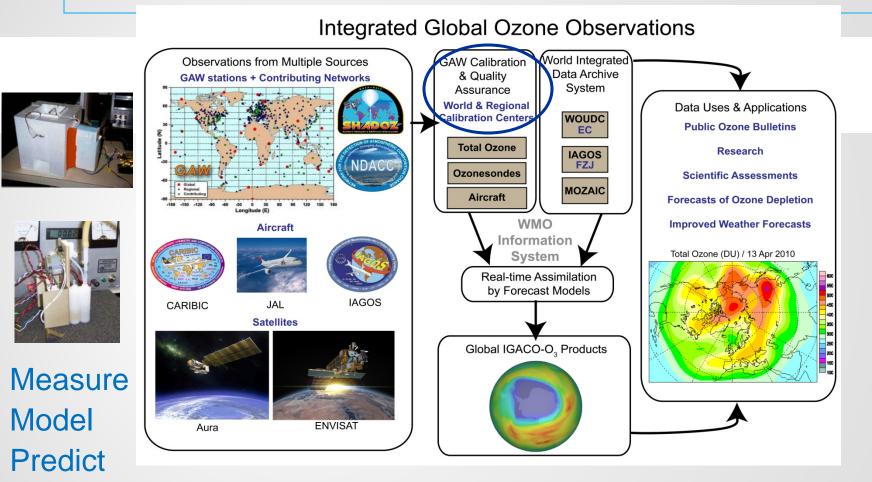
SHADOZ (Southern Hemisphere Additional Ozonesondes): Status Report to GRUAN

Anne Thompson, anne.m.thompson@nasa.gov 12 March 14, 6th GRUAN ICM, Greenbelt

Archiver: J Witte, SSAI@GSFC; http://croc.gsfc.nasa.gov

Outline of Presentation

- What, Why, Where, Who of SHADOZ
- New SHADOZ Science: Examples from Trend Studies


Archive Updates

- Reactivation of Stations
- Data Re-processing by WMO/NDACC Ozonesonde Guidelines. Focus on 3 variables (Sensing Solution Type [SST], Instrument type, Pump Correction Factor [PCF]).

Other Ozone/Radiosonde Issue with SHADOZ Impact

- Background Current (Voemel & Diaz, 2009; Stuebi & Levrat, 2009). Implication for SHADOZ at certain sites
- Radiosondes (RS80-> RS92->Imet). "Pressure Offsets" new <u>AMT</u> paper (Stauffer et al, 2014) includes SHADOZ data
- Third (new) instrument type. SPC stable, ENSCI-> DMT ??
- Summary SHADOZ at Year 16. Instrument changes will require periodic re-processing & lab testing

Integrated Earth Observing for Ozone

- Satellites with ground-based (eg Dobson) instruments for total column
- Profile validation partial columns (lidar, aircraft); only sondes measure surface to 5-10 hPa (35 km) with 50-100 m vertical resolution

Why & How: SHADOZ Initiative in 1998

- "Strategic" ozonesonde network coordinates launches in space & time for specific scientific purposes
- Validate ozone profilers & new tropospheric products from TOMS/UARS/SBUV. Also SCIAMACHY, Aura, NPP
- Wave-one in total ozone in stratosphere or troposphere?
 => Requires zonal coverage of stations
- What is role of dynamics (convection, QBO, ENSO, etc) in ozone variability? => Requires 2-5 launches/month
- ADD IN PRACTICAL CONSTRAINTS
 - Operational host supplies ground stations, launch gas, personnel
 - NASA, NOAA supply *some* sondes ALL data archived @ GSFC
 - Data distribution: open, timely, user-friendly format
 - Leveraging resources key to sustaining network

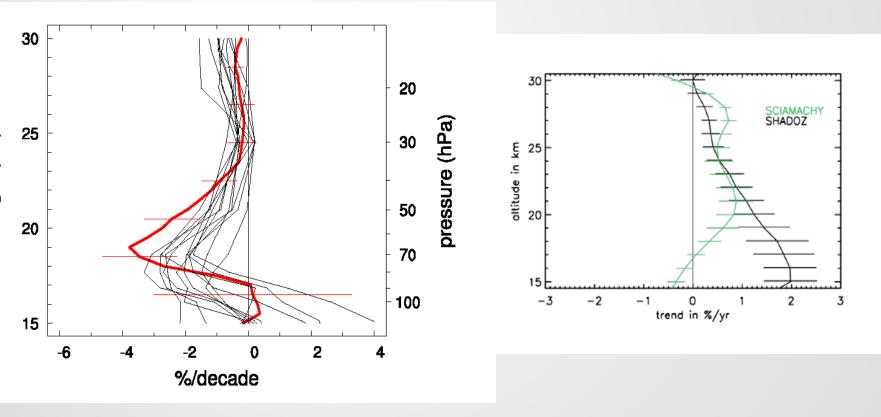
Where, When, Who: SHADOZ Stations & Data Archive

- WHERE & WHEN are the data?
 - Fifteen stations operated 2005-2009 [Thompson et al, JGR, 2012]
 - <u>http://croc.gsfc.nasa.gov/shadoz</u>. Annual -> WOUDC, with links to NDACC, AVDC. In 2014 > 6K P-T-U & O₃ profile sets
- WHO: Anne Thompson, PI; Jacquie Witte, Archiver & International Team from ~15 host countries and sponsors (Europe, US, Japan, Africa, So Am.)

Topic of Study	Station*	Co-I/Sponsor**	SHADOZ start year	Site start year	Network affiliation **	Ancillary data/UACO variables	Expected sonde freq./year
Long-term Validation / Trends (Data available prior to 1995)	Kuala Lumpur	Maznorizan bt Mohamad, & YY Toh, Malaysian Met., S. Yonemura, Japan	1998	1992			26
	Watukosek	Ninong Komala, LAPAN & Masatomo Fujiwara, Hokkaido Univ.	1998	1998	SOWER	CFH-water vapor profiles	26
	Am. Samoa	Bryan Johnson & Samuel J. Oltmans, NOAA	1998	1986	NDACC / GAW	Dobson / surface CO2, CH4, CO, CFCs, O3	52
	Natal	Francis J. Schmidlin, NASA/Wallops & Neusa Paes Leme, INPE	1998	1979	NDACC	Brewer	52
	Hilo	B. Johnson , D. Hurst & S. J. Oltmans, NOAA	1998	1982	NDACC / GAW	MLO – Dobson, FTIR, O3 Lidar, CFH-water vapor / surface CO2, CH4, CO, CFCs, O3	52
	Irene	G.J.R. Coetzee, S. African Weather Serv.	1999	1990		Dobson	26
	La Reunion	Françoise Posny, Université de La Réunion	1998	1998	NDACC	SAOZ, O3 Lidar	26
Processes in the FT, TTL, and LS	Fiji	B. Johnson & S. J. Oltmans, NOAA	1998	1997			26
	San Jose***	Rennie Selkirk, NASA/GSFC & Holger Vömel, GRUAN Lead Center	2006	2006	GRUAN	SO2 sondes, CFH-water vapor profiles	52
	San Cristobal	B. Johnson (NOAA) & H. Voemel	1999	1998	GRUAN / SOWER	CFH-water vapor profiles	52
	Paramaribo	Rinus Scheele, KNMI	1999	1999	NDACC	Brewer	52
	Ascension Is.	Francis J. Schmidlin, NASA/Wallops	1998	1990	TCCON / GAW	Carbon columns / surface CO2, CH4, CO, CFCs	26
	Nairobi	Bertrand Calpini, MeteoSwiss & John Nguyo, KMD	1999	1996		Dobson, surface O3	52
	Ha Noi	H. Gia Hiep, AMO, S. Ogino, JAMSTEC, M. Fujiwara, Hokkaido Univ., & M. Shiotani, RISH	2005	2004	SOWER	CFH-water vapor profiles	26

* Colors for stations indicate geographic region: blue-Western Pacific, red-Atlantic/Africa, white-Subtropics, & green-Equatorial Americas
 ** See Acronyms in Appendix
 *** Station formerly referred to as Alajuela / Heredia

SHADOZ Archive Status, March 2014

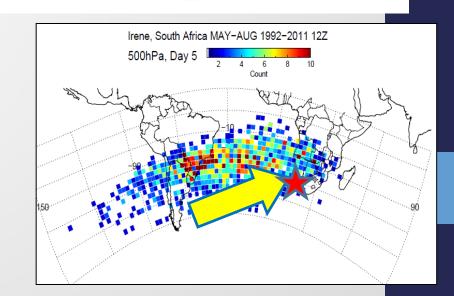

- Data gaps at 5 stations have been resolved (thanks to NOAA & partners, GSFC/WFF, INPE, SAWS)
 - Gaps began 2008 at Fiji, San Cristobal (Galapagos, Ecuador), Irene (So. Africa). <u>All are operational as of 2014</u>. Irene since 2012.
 - Ascension & Natal gaps started in 2010. Natal operational, 10/13
- Data Link to SHADOZ at NDACC. WOUDC data delivery from SHADOZ complete for 2012, partial for 2013.
- Re-processing underway at all stations.
 - NOAA Station data delivered to SHADOZ 3/14: Fiji, Samoa, Hilo. San Cristobal & Costa Rica pending.
 - Underway: Nairobi, Paramaribo, Réunion, Watukosek.
 - More complex: Kuala Lumpur, Hanoi, Natal

New "Science" from SHADOZ

- Fifteen-year record (late 80s/early 90s at 5 sites) invites trends analysis.
- Example (1): Combined with SAGE II, 1984-2009 (Randel & Thompson, 2011) is "standard" for evaluating Chem-Climate Models (CCM). Lower strat (LS) ozone <u>declining.</u>
- Example (2): Combine selected SHADOZ stations, compare to SCIAMACHY, MLS, OSIRIS, 2002-2010. Data sets not in agreement, but mostly show LS ozone <u>increasing!</u> Gebhardt et al, ACP, 2013 → Increase in Brewer-Dobson circulation has "paused"
- Example (3): Large free tropospheric ozone increases over SHADOZ Irene and Réunion, 1990-2008 (Thompson et al. 2014) suggest rapidly growing SH pollution transport!

Trends (1): Well-resolved LS from SAGE-SHADOZ = 25year Record (Red, Left) Trends (2): Gebhardt et al, ACP, 2014. Diverse Results with SCIAMACHY, SHADOZ for 2002-2011. (Right)

Ozone Decline, 17-21 km, 1984-2009

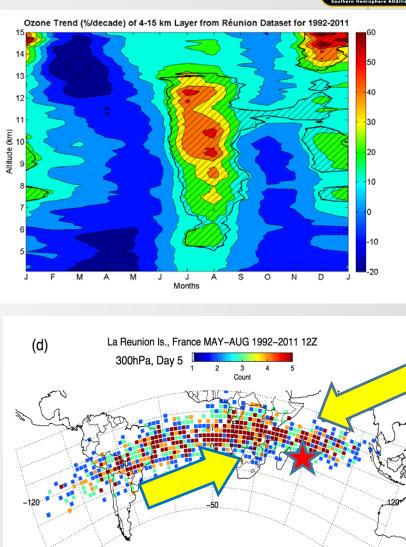

Ozone increase (?), 2002-2011

Free Tropospheric Ozone Trend from Irene (Pretoria) SHADOZ Station, 1990-2007

- At 4-5 km in April to June (upper) there may be a nearsurface ozone pollution trend
- In 5-11 km layer +25-decade ozone increase, in <u>winter</u>!
- Back-trajectories (lower) reveal much of the ozone origins from South America where mega-cities growing in emissions 20%/decade or more
- (Thompson et al, ACP, submitted, 2014)

(up of the second secon

Ozone Trend (%/decade) of 4-11 km Laver from Irene-MOZAIC Dataset for 1990-200



Free Tropospheric Ozone Trend from Réunion SHADOZ Station, 1992-2011

- Magnitude at Réunion much greater than at Irene (but 2 yr longer record)
- Trajectories imply Asian as well as African, So American pollution transport in <u>winter</u>
- Irene and Reunion have Launch Time shift from early to later in day that artificially introduces more O₃ into BL, so trends only above 4 km!
- (Thompson et al, ACP, submitted, 2014)

Chronology of SHADOZ QA Issues

1998-2005

- Biases apparent in early SHADOZ data when total ozone column amounts compared to Dobson, TOMS satellite
- Discrepancies in stratosphere rationalized by comparisons of vertical structure because strat. COLUMN amount does not vary
- JOSIE-2000 Lab tests with WMO seem to explain some biases

• 2005-2009 (in Thompson et al, 2012, JGR)

- After JOSIE-2000 and 2004 field tests, some stations changed solutions, instrumentation. Introduced "noise" in record
- One station 're-processed' data so OMI agreement excellent but how is unknown

2012-2014 Community "Homogenization" of Ozone data underway

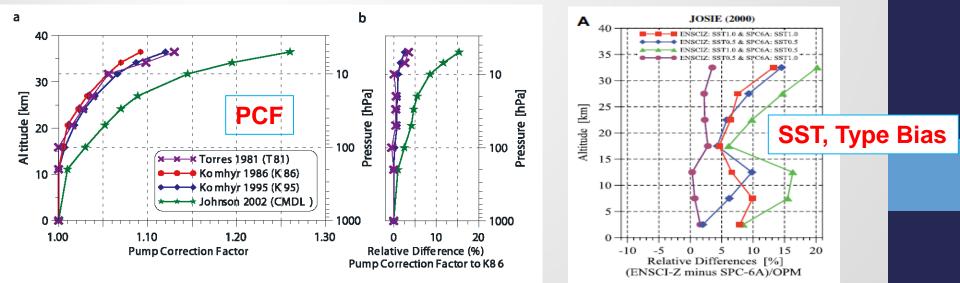
Variables Affecting Ozone Measurement. Some Affect Entire Profile, Others More Important in Stratosphere, Troposphere or TTL

- Every sonde launched is a new instrument; I_{bg} measured in lab
- $P_{O3} = 4.31 \times 10^{-2}$ (I- I _{background}) x T_{pump} x PCF (1/F)
- Calibrated through exposure to low, high ozone amounts.
- Important variables
 - **SST = sonde solution type.** KI strength, buffering, eg 0.5%, buffered; 1% buffered, 2% unbuffered, etc
 - Response time, I_{background} (I_{bg}) determined in pre-launch calibration
 - Pump efficiency correction, PCF, important above 25 km
 - Instrument manufacturer (two "types")*, materials

* 3rd manufacturer since 2010

Mixing ratio = [Partial pressure of ozone = PO3]/P(total Atm)

O₃-sonde Radiosonde


Status for SHADOZ, 2005 (in *Smit et al.,* 2007; *Thompson et al.,* 2007).

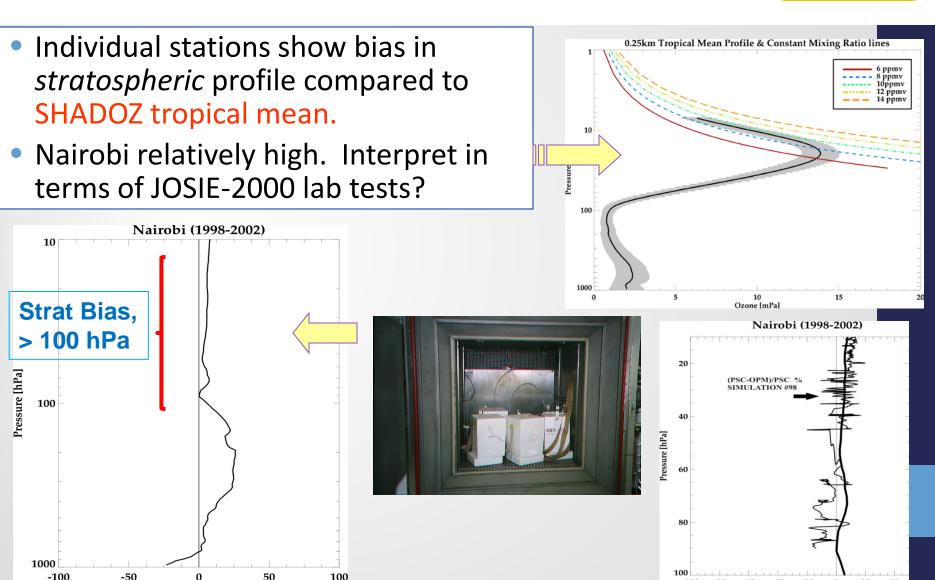


Table 1. SHADOZ Sites and Method, With Parameters During JOSIE-2000 Tests

SHADOZ Sites	Latitude, deg	Longitude, deg	Station Method, PCF	Station Instrument	JOSIE Method ^a	JOSIE Instrument
Suva, Fiji	-18.13	178.4	2% KI, N ^b	SPC	2% KI	SPC
Pago Pago, American Samoa	-14.23	-170.6	2% KI, N	SPC	2% KI	SPC
Papeete, Tahiti	-18	-149	2% KI, N	SPC	2% KI	SPC
San Cristóbal, Galapagos	-0.92	-89.6	2% KI, N	SPC	2% KI	SPC
Paramaribo, Surinam	5.81	-55.2	1% KI, K ^b	SPC		
Natal, Brazil	-5.42	-35.38	1% KI, W ^b	SPC,° ENSCI	1% KI	SPC
Ascension Island	-7.98	-14.42	1% KI, W	SPC,° ENSCI	1% KI	SPC
Cotonou, Benin (started 2005)	6.21	2.23	1% KI, K	SPC		
Irene, South Africa	-25.25	28.22	1% KI, K	SPC		
Nairobi, Kenya	-1.27	36.8	1% KI, K	ENSCI	1% KI	ENSCI
Malindi, Kenya	-2.99	40.19	1% KI, K	SPC		
Kuala Lumpur, Malaysia	2.73	101.7	1% KI, K	SPC		
La Réunion	-21.06	55.48	0.5, 1% KI	SPC,° ENSCI	.5, 2% KI	ENSCI
Watukosek, Indonesia	-7.57	112.7	2% KI, N	ENSCI		
Kaashidhoo, Maldives ^d	5	73.5	2% KI, N	ENSCI		
Aerosols99 Cruise ^d			2% KI,N	ENSCI		

^aResponsible Co-I JOSIE participant: NOAA/CMDL for Fiji, Samoa, San Cristobal, and Tahiti; NASA Wallops Flight Facility (WFF) for Natal and Ascension; Méteosuisse for Nairobi; Univ. Réunion for La Réunion. FZ-Jülich JOSIE participant test method used at Irene, Paramaribo.
^bPCF key: N, NOAA/CMDL [Johnson et al., 2002]; K, Komhyr [1986] and Komhyr et al. [1995]; W, Wallops laboratory test [Torres, 1981].
^cMixture of solution strengths. instruments used: see details given by Thompson et al. [2003a].

SHADOZ Tropical Climatology Illustrates Bias at Individual Stations – Thompson et al., JGR, 2007

-100

n

(Sonde - Climo.)/Sonde %

50

100

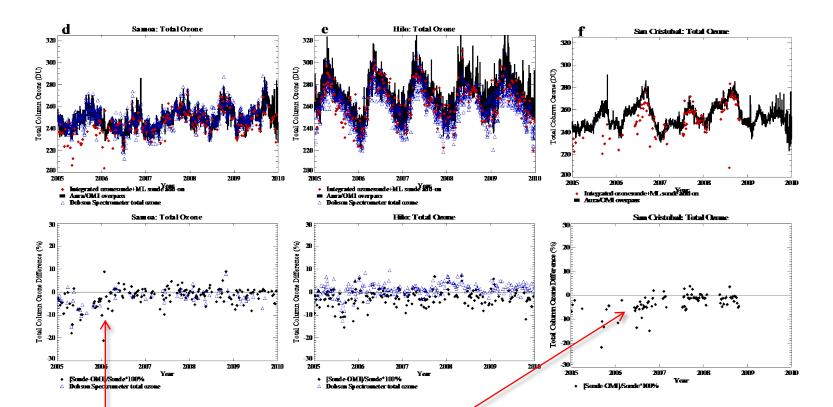
-60 -40

-20

(Sonde - SHADOZ Climo.)/Sonde %

0

20


-100

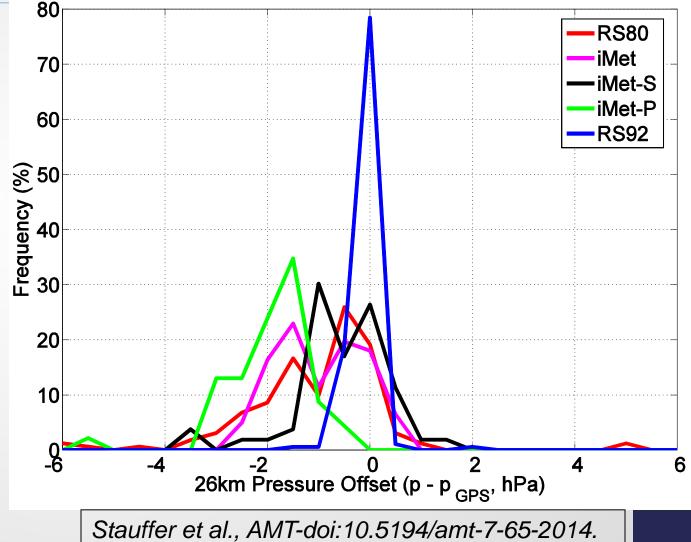
-80

UPDATES. How to Address SHADOZ Data Set, from 1998-2013?

- Challenge shown below (from T12). SST change, 2005-2009?
- Recommended "transfer function" developed by O3-DQA (WMO/JOSIE) will be used to "homogenize" data
- Individual PIs process data, add meta-data to archive files

New Technical Issues include Radiosonde

- Background Current (Voemel & Diaz, 2009; Stuebi & Levrat, 2009). Implication for SHADOZ at certain sites. Solomon et al. 2005, Left*
- New Radiosondes (RS80-> RS92->Imet). Pressure offsets! Right
- Third instrument type. SPC stable, ENSCI-> DMT change displays operational problems – impact on long-term record TBDI!

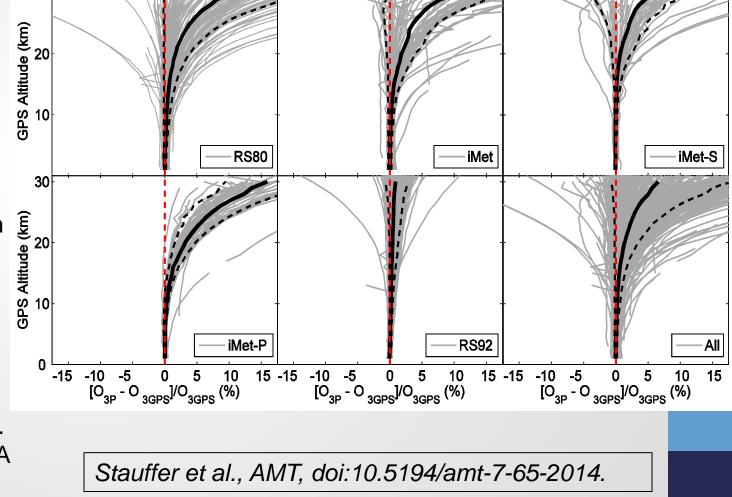


Radiosonde Pressure Offsets at 26km

Radiosonde pressure measurements compared to GPSderived pressure

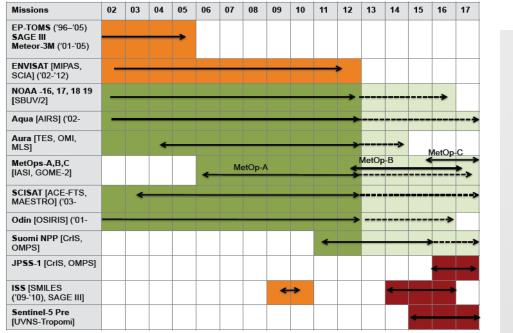
Pressure errors propagate to ozone measurements, only a few to 10%. Total column little affected

Performance of RS92 in the stratosphere is superior to other radiosonde types



O₃ Mixing Ratio Errors from Pressure Offset

30

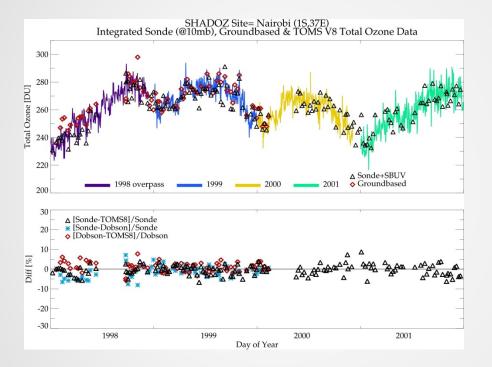

 O_3 mixing ratio percent errors of each radiosonde type- mean= black **RS-80s mainly from** Houston, TX iMet, -S and -P from Idabel, OK, Houston, MD & CA NASA DISCOVER-AQ locations

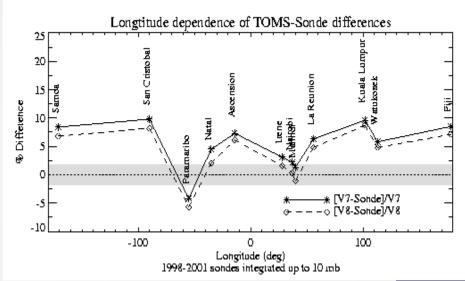
RS92s from <u>Beltsville</u>, *Ronald H. Brown* and Irene, SA SHADOZ

Summary: SHADOZ Re-processing – Iterative over Next 2-3 Years, Consultative with WMO O3-DQA

- WMO O3-DQA, Data Quality Assurance activity, 2010-2012, is "homogenizing" O_3 data given known biases in instrument type, SST
- SHADOZ stations re-processing in 2013-2014. Will re-evaluate biases, ground-ozone/OMI comparisons
- Results Guidelines for a follow-on JOSIE (2015?). <u>Anticipate evaluation of</u> <u>radiosonde change impacts</u>. Below: Satellites supported by SHADOZ, 2002-

THANK YOU FOR YOUR ATTENTION! Acknowledgments & References


- Support from NASA, NOAA, with JOSIE and O3-DQA sponsored by WMO.
- C. Gebhardt, et al., Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002-2011, Atmos. Chem. Phys., 14, 831-846, 2014. doi: 10.5194
- H. G. J. Smit et al, Assessment of the performance of ECC-ozonesondes under quasiflight conditions in the environmental simulation chamber: Insights from the Jülich Ozone Sonde Intercomparison Experiment, *JGR*, 112. D19306, doi: 10.1029/ 2006JD007308, 2007.
- R. M. Stauffer et al., Propagation of radiosonde pressure sensor errors to ozonesonde measurements, *Atmos. Meas. Tech., 7,* 65-79. 2014. *doi:10.5194/amt-7-65-2014*.
- A. M. Thompson et al, Southern Hemisphere ADditional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology.
 Comparison with TOMS and ground-based measurements, JGR, 108, 8238, doi: 10.1029/2001JD000967, 2003.
- A. M. Thompson, et al., Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2004 tropical ozone climatology. 3. Instrumentation, station variability, evaluation with simulated flight profiles, *JGR*, 112, D03304, doi: 10.1029/ 2005JD007042, 2007.
- A. M. Thompson et al., Strategic ozone sounding networks: Review of design and accomplishments, *Atmos. Environ.* 45, 2145-2163, 2011.
- A. M. Thompson et al., SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone climatology (2005-2009): Tropospheric and lower stratospheric profiles with comparisons to OMI-based ozone products, JGR, 117, D23301, doi: 10.1029/2011JD016911, 2012.
- A. M. Thompson et al., Is tropospheric ozone over southern Africa really increasing? Evidence from sonde and aircraft profiles, *Atmos. Chem. Phys.,* submitted, 2014.

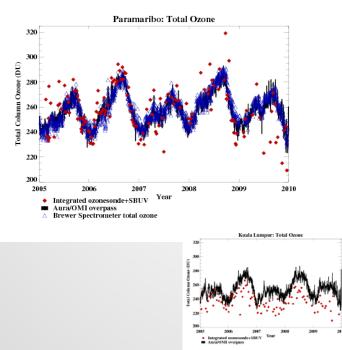

SHADOZ Re-Processing Schedule & Deliverables

Timeline	SHADOZ PI, Collaborator/Partner Activities for O3S- DQA & SI2N	Deliverables, Reporting & Publications	
April 2012	Sonde Technical Issues in O3S-DQA, Greenbelt Workshop, attended by PI, NASA, NOAA collaborators and Members of the WMO Ozone SAG	 Processing with first set of Transfer Functions by SHADOZ volunteers. O3S-DQA Report to SI2N Workshop, Columbia, MD. 	
June – Dec. 2012	Preliminary data re-processing at changes. Optimize background current correction. (First scheduled: Fiji, Samoa, San Cristóbal)	AGU Special Session on O3S-DQA and related sonde technical results: Dec. 2012, San Francisco	
Jan. – June 2013	Workshop, O3S-DQA Report, Publication preparations for SI2N and UNEP/WMO 2014 Assessment deadline.	 SHADOZ Deliverable: O3S-DQA Report(s). SHADOZ PI, Collaborators submit 1 or more journal articles for publication. 	
June – Dec. 2013	Workshop: (1) evaluate Transfer Function and other re- processing changes on SHADOZ dataset; (2) Assess needs and protocol for Tropical-JOSIE to be conducted in 2014- 2015.	Re-process all SHADOZ datasets (V06) for self- consistency within given station. Apply Transfer Function as needed.	
Jan. 2014 – Dec. 2015	Review Results at WMO-sponsored Workshop.	Conduct Tropical-JOSIE at WCCOS, Jülich.	
Jan. – Dec. 2016	Report at Quadrennial Ozone Symposium.	 Reprocess & homogenize the 1998-2015 SHADOZ Data. Prepare publication(s) for 2018 UNEP/WMO Ozone Assessment. 	
Timeline	SHADOZ Statistical Analyses, Classifications with LID & SOM, Interannual Variability & Trends	Deliverables, Reporting & Publications	
2013 – 2014	 Classified profiles on SHADOZ website or link Comparisons of LID & SOM for Ascension, Natal, Irene 	Prepare journal article, 2014	
	SHADOZ comparisons with TES	Prepare journal article, 2015	
2014 - 2015	Classified profiles for KL, Hilo, Nairobi, Samoa		
	Analyze reprocessed, homogenized data for climate signals, trends	Prepare journal article, 2016	

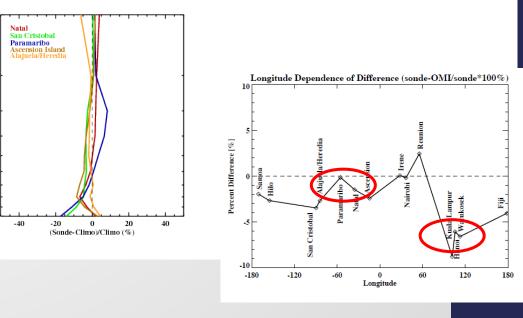
Comparison of SHADOZ, Late EP/TOMS, Dobson (Left). Comparisons of Stations (Right)

Nairobi site comparison - Excellent TOMS-Sonde-Dobson agreement.

Summary of Station Agreement With TOMS (1998-2005 Data)

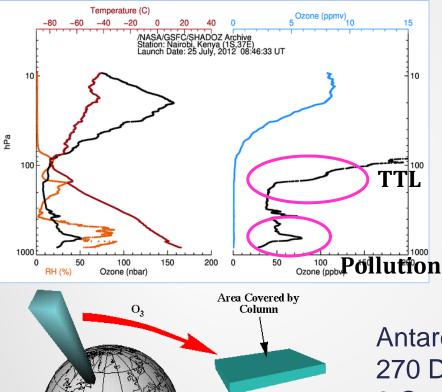

Thompson et al, JGR, 2007= "T07"

Current Status. SHADOZ Biases due to Solution, Instrument Type, PCF Characterized.



- In T07 (not shown) mean total ozone offset relative to *TOMS* 10 stations ~7% low, range 1-11% low
- In T12 (left, center), "re-processing" eliminated Paramaribo offset; 13-site mean offset < 5% relative to *OMI*. Hanoi, KL, Watukosek largest (low sonde) offset (right). Unknown cause.

(hPa)

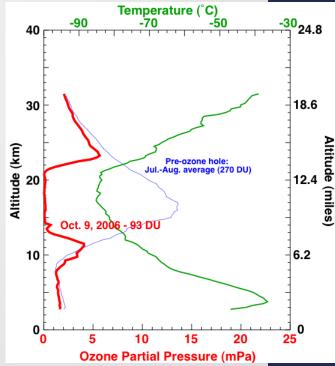


S. American/Atlantic Ocean sites: 1998-2009

Good & "Bad" Ozone UNITS: Partial Pressure, Mixing Ratio, Dobson

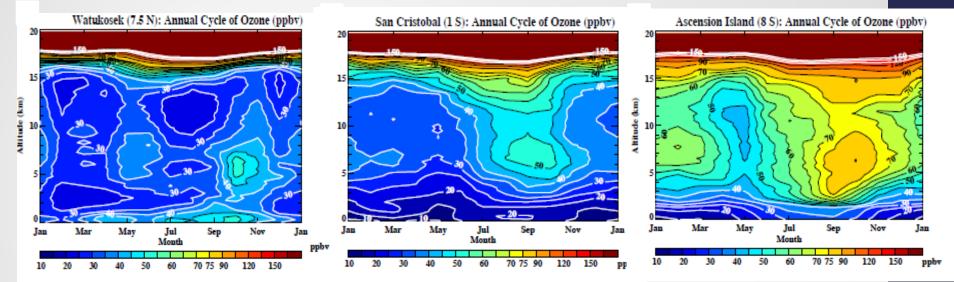
Left - Mid-latitude; Lower - Dobson; Right - "Hole"

All the Ozone over a certain area is compressed down to 0° C and 1 atm pressure.

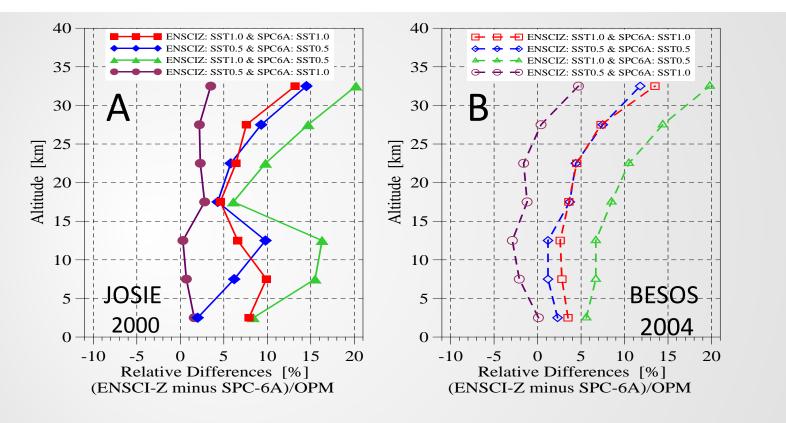

It forms a slab 3mm thick, corresponding to 300 DU.

Antarctic "O₃ Hole" 270 DU to 93 DU 9 Oct 2006 "Bite" at coldest T, Particle-CI reaction

NOAA's B Johnson & D Hoffman ->


← Good ozone in ppmv

Dynamics/climate interest in UT/LS or "TTL" Pollution > 30 ppbv (tropics), 80 ppbv


Processe & Validation. Three Distinct Regions: W Pacific, 'Equatorial Americas', Atlantic GWI = Convective Proxy, Declines West to East. Pollution Increases West to East

Property	Watuk.	San Cris.	Ascen.	
T'pause Altitude	16.6 km	16.6 km	16.0 km	
5-15 km Mean Mixing Ratio	33 ppbv	48 ppbv	64 ppbv	
Mean GWI [arbitrary unit]	18.5	12.6	8.35	

Comparisons of 4 SSTs (KI strength) & Manufacturer in Chamber/JOSIE (left) & on Field Test (BESOS) (right), relative to standard uv photometer. (From H. Smit, in *Thompson et al.*, 2010).

OPM = UV Photometer "Standard" used in JOSIE chamber & on BESOS Balloon:

- 1) Precision and accuracy both 5-10% vs 15% pre-SHADOZ
- 2) WMO/GAW (World Meteorological Organization/Global Atmospheric Watch) adopted new standards as a result

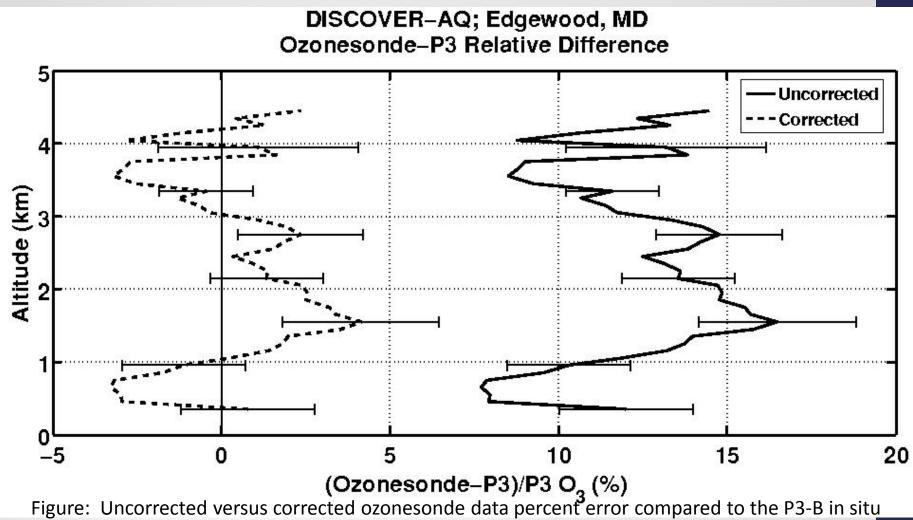
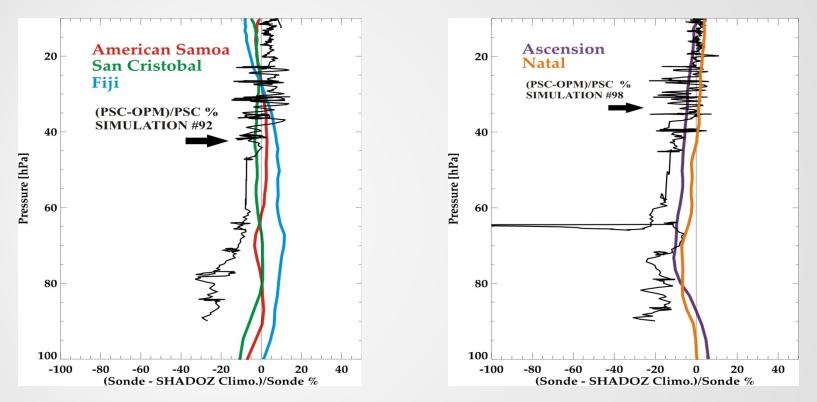



Figure: Uncorrected versus corrected ozonesonde data percent error compared to the P3-B in situ chemiluminescence measurement of ozone. Correction is from the application of the controlled simulations of JOSIE-1998 (*Smit et al., 2007*)

Statistic	Uncorrected	Corrected
Normalized Mean Bias (%)	13.3	0.1
RMSE _{cv} (%)	13.6	8.3

Other SHADOZ-JOSIE-2000 Comparisons

- JOSIE sonde behavior relative to UV ozone standard follows SHADOZ fairly well [Thompson et al., 2007].
- Homepage <http://www.fz-juelich.de/icg/icg-ii/josie>