Raman Lidar Claims Independence

Monique Walker, PhD

Post-Doc ORAU/NASA GSFC, Greenbelt MD

Demetrius Venable, PhD

Howard University, Washington DC

David Whiteman, PhD

NASA GSFC, Greenbelt MD

Introduction

- Raman water vapor Lidar is considered a tier 2 instrument in GRUAN
- A weakness is that most Lidar measurements are calibrated with respect to another water vapor measurement and are therefore not independent.
 - The transfer of calibration from another instrument to the Raman Lidar is one of the largest sources of systematic uncertainty in the Lidar measurement.
- It is also advisable to perform the calibration frequently in an effort to randomize this source of systematic uncertainty. (Whiteman et al. 2012)
- The Lamp mapping technique offers a means to both independently and frequently calibrate Raman Lidar water vapor measurements
 - Agreement with radiosonde based calibration to better than 5% (*Venable et al.*, 2011)

Objective

- Transfer the independent calibration capability to a mobile system (ALVICE NASA GSFC)
- To independently calibrate
 Raman Lidar water vapor and develop techniques for performing frequent calibration

Motivation

- Improve the quality of Raman Lidar based water vapor time series for trend detection
- To perform independent calibration efforts in the field

Lamp Mapping Technique

- A halogen lamp is scanned over the aperture of a telescope while normal data acquisition is occurring.
- This provides information, pointby-point, on the optical efficiency of the complete optical system.
 - the optical efficiency can change significantly across the optical train
- 15 minutes required to perform a standard mapping

ALVICE & HURL Systems

Common Capabilities of the ALVICE and HURL Systems

Both use narrow band-pass filters and a narrow field-of-view telescope and are capable of measuring:

- 1. Rayleigh/Mie at ~354.7 nm
- 2. Raman scattered photons from nitrogen molecules at ~386.7 nm, and
- 3. Raman scattered photons from water vapor molecules at ~407.5 nm *Tour on Thursday*

HURL
400 mm Primary ~16 in
Fiber Coupled
Interest is in Troposphere
~10 W laser power

ALVICE
600 mm Primary ~24 in
Direct Coupled
Additional Channels
Pure Rotational Raman (Temperature)
Interest includes UT/LS
~18 W laser power

Water Vapor Calibration Equations

- Temperature dependent terms can have a >5% effect depending on system design
- Water vapor cross sections are calculated from *ab initio* work of Avila et al., 2004

Filter Efficiency $\frac{\varepsilon(\lambda_N)}{\varepsilon(\lambda_{wv})}$

- Filter transmission curves are needed to determine calibration constant.
- Convolution of theoretical cross sections and filter functions give the F(T) terms and are a crucial component of the calibration

LMT Calibration Results

- Transfer of LMT calibration technique to ALVICE tested during the ALVICE NDACC deployment to U. Western Ontario 2012
- Preliminary radiosonde and independent calibrations are within 1 sigma of each other but results were based on earlier filter transmission curves
- Currently working on procedures to improve filter measurement consistency

HURL C _R Comparison			
	Radiosonde	LMT	
C_R	$195.8 \pm 8.7 \text{ g/kg}$	$186.8 \pm 13.7 \text{ g/kg}$	
Number of Runs	19	10	

Agreement with traditional Radiosonde technique to better than 5% (Venable et al., 2011)

Preliminary ALVICE C _R Comparison			
	Radiosonde	LMT	
C_R	104 ± 5 g/kg	96.5 ± 5 g/kg	
Number of Runs	16	16	

Summary and Conclusions

- Lack of independent calibration for Raman water vapor lidar is a large source of systematic uncertainty in the measurements
 - Frequent calibrations are desired to randomize this source of systematic uncertainty
- Venable et al. 2011 published work indicates an agreement of the LMT derived Raman water vapor lidar calibration and that of radiosonde within 5%
- An independent, lamp-based calibration has been developed for the mobile NASA/ALVICE system.
 - the initial results indicate agreement within 7% for the calibrations determined independently and based on radiosonde comparisons
- Improved techniques for characterizing interference filters are being developed
- Tour on Thursday