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Time to Detect Trends

* Number of years to detect trend
at the 95% confidence level with
90% probability

* Values required
— standard deviation of the data

— autocorrelation of the data

— magnitude of the anticipated
trend
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Instrumental Uncertainty (%)

* Results incorporated into GRUAN guide | Figure. Years to detect trend versus instrumental
] . . measurement uncertainty for differing measurement
- h’gh random uncen‘amty Is tolerable frequencies and atmospheric variabilities.

but can mask small systematic
uncertainty

— protocols are needed that tend to randomize sources of systematic
uncertainties

— to decrease time to detect trend, it is much more important to increase the
frequency of measurement than to decrease the uncertainty

* Measurements every 3-4 days optimum
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Boulder FPH time series
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Figure 2. Moving averages of the 2 km water vapor mixing ratio averages in each of the six altitude
layers. The averaging window had a width of 1 year and a threshold of 12 data points to compute an aver-
age. Colored vertical bars define the four trend periods for each altitude layer. Moving averages were not
calculated for the first and last years of the record. No interpolated or extrapolated values are shown.



pressure (hPa)

What about the lower stratosphere?

Use Boulder FPH time series, MLS and GEOS-5 for similar studies in the lower
stratosphere (2004 - 2012)

FPH and MLS in excellent agreement that standard deviation of time series very low
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—  MLS averaging kernels used on FPH data.
15

30

== FPH (all, full res) (1)

FPH (full res) (1)
== FPH (MLS ak) (1)

MLS (at FPH) (1)

MLS (day 15 = 7 days) (60)
== MLS (whole month) (130)
== LS (35-45°N) (2720)

GEOS (whole month) (30)

4-5% single measurement total variability (compared to 75% in UT)
is less than published estimates of instrument uncertainties alone




Trends and times to detect trends (Boulder)
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years to trend detection

* the most recent 9 years of MLS and FPH data
* the 30+ year Boulder record

* FPH and MLS in good agreement over the period 2004-2013



Time to detect trends (50 hPa @ Boulder)
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* Time to detect trends in LS for two scenarios

* (left) autocorrelation, trend, variability from the 9 years (2004-
2013) of MLS measurements

* (right) autocorrelation, trend, variability from the 30+ year Boulder
time



pressure (hPa)
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What about other GRUAN sites?

% change yr’1
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years to trend detection

Using MLS 2004-2013 data, the trend patterns observed
throughout the 35-45 degree zonal band are similar
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Global maps at each pressure level

MLS, gridRes = 5.0°, nHrsAvg = 168, p = 46.4 hPa
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Raman lidar for trend detection water vapor :

UT vs LS
Instrument Frequency of  Years to detect Years to detect Years to detect
operation UT trend 30+ yr LS 2004-2013 LS
trend trend
MLS 1x/month ? ~10 ~9
MLS ~1000x/month  ? ~10 ~5
FPH 1x/month ~30 ~10 ~5
ALVICE @ Table 7x/month ~18 ~19* ~12
Mtn
(5-10 hr/night)
mini Raman lidar 7x/month ~20 NA NA

(1-2 hr/night)

ARM SGP Raman  All available
Lidar monthly data

Assumes all uncertainties in lidar data are random, therefore

Techniques must be used that tend to randomize sources of
systematic uncertainty with total change kept to << 1%/yr



Systematic Uncertainties in RL Water Vapor Data Analysis

“It is assumed that the result of a measurement has been corrected for all recognized
significant systematic effects and that every effort has been made to identify such effects.”
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Systematic Uncertainties in RL Water Vapor Data Analysis
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How about those speculations from 20117

* Trend detection would be easier in the UT than LS

— FPH and MLS have lower random uncertainties in the LS
than thought and the trends are larger than predicted by
GEOS-5

* Trend detection in LS more efficient

* Raman water vapor lidar is better suited to UT trend detection than
LS

— The relatively high random uncertainty of Raman lidar makes
it much better suited to UT trend detection

— Time to detect trends in UT will be fairly high for any
instrument but also more tolerant of residual uncorrected
systematic uncertainty than in the LS

— Techniques are needed to randomize the systematic
uncertainties that are corrected for in the data analysis



Summary and Conclusions - |

* Water vapor trends are currently being measured in the LS in 3-10 years with MLS
and FPH

— Low uncertainty measurements from FPH and MLS permit this

— No instrument has yet been shown to be measuring trends in the upper
troposphere

* we conclude that trend detection of water vapor can be done more
efficiently in the LS than UT

* For MLS and FPH there is little advantage to increasing the number of
measurements per month for trend detection over the period 2004-2013

— due to very high precision of MLS and FPH measurements and rapid increase
In auto-correlation with wider temporal windows

* The 2004-2013 MLS data record indicates

— trends and times to detect trends are similar throughout the 35-45 zonal band
— mid-latitudes in both hemispheres attractive as sites for trend detection

— stations arranged in other latitudes are needed although the tropics are less
attractive.

* For any trend detection time series to be useful, recurring systematic uncertainties
must be randomized to much better than 1% per year



Summary and Conclusions - I

* Future Work

* continue study of current MLS/FPH based results
* how to understand physically the relationships observed

* analyze merged HALOE/MLS data record to look for similar
pattern to the variability and autocorrelation

* Does that record support
 similar trends in 35-45 band
* preferred geographic locations for siting stations

e Submission to JGR

* Quantify the trade-off between randomization of sources of
systematic uncertainty in the Raman water vapor data analysis
and the time to detect trend

* propose techniques for accomplishing the needed randomization
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