Task Team Radiosonde

- Progress Report for April 2013-March 2014 -

ICM-6, Maryland, March 2014

Contents

- 1. Introduction
- 2. Membership
- 3. Updates for the Tasks
 - 1. Time lag in RS92 humidity corrections
 - 2. The use of auto-launchers
 - 3. Controlled descent mechanisms
 - 4. Multi-payload launch configurations
 - 5. Define the non-RS92 data collection client requirement
 - 6. Develop a UT/LS water vapour data product
 - 7. Define the frostpoint hygrometer data collection client requirement
 - 8. GRUAN data products for RS92 radiosondes
 - 9. Define the ozone sonde data collection client requirement

1. Introduction: Task Team Radiosonde

- Provide guidelines for the GRUAN on how to obtain the best possible, reference quality data from radiosoundings
- Evaluate radiosonde data products on the basis of the GRUAN specifications
- Survey radiosondes and sensors (in particular considering their performance in intercomparisons)
- Review the uncertainty analyses and correction algorithms
- Recommend radiosonde launch procedures and metadata to be collected
- Draw conclusions on the suitability of radiosondes, specific sensors, procedures, and algorithms for the network
- Promote scientific efforts for assessing and improving radiosondes
- Recommend measures for ensuring long-term stability of radiosonde records.
- Provide input to the GRUAN manual by defining launch procedures and pre-launch checks that need to be followed by the sites

2. Membership

Name	Affiliation	Status
Masatomo	Faculty of Environmental Earth Science,	Co-chair
Fujiwara	Hokkaido University, Japan	
Rolf Phillipona	MeteoSuisse, Switzerland	Co-chair
Ruud Dirksen	GRUAN Lead Centre, DWD, Germany	
Frank Schmidlin	USA	
Alexander Kats	Central Aerological Observatory/KOMET,	
	Russia	
Hannu Jauhiainen	The Association of Hydro-Meteorological	HMEI representative
	Equipment Industry, Finland	
Michael Hicks	Howard University, USA	
Larry Miloshevich	MILO-Scientific, USA	
Rigel Kivi	Finnish Meteorological Institute, Finland	
Nobuhiko Kizu	Japan Meteorological Agency, Japan	
LI Wei	China Meteorological Administration, China	

3. Updates for the Tasks

- 1. Time lag in RS92 humidity corrections
- 2. The use of auto-launchers
- 3. Controlled descent mechanisms
- 4. Multi-payload launch configurations
- 5. Define the non-RS92 data collection client requirement
- 6. Develop a UT/LS water vapour data product
- 7. Define the frostpoint hygrometer data collection client requirement
- 8. Finalize the definition of GRUAN data products for RS92 radiosondes: Technical document describing pre-launch procedure (TD5)
- 9. Define the ozone sonde data collection client requirement

(1) Time lag in RS92 humidity corrections

- **Task:** Assess time lag in RS92 humidity corrections, comparing the GRUAN processing to other published approaches.
- Main Contact: Ruud Dirksen with assistance from Michael Sommer, Larry Miloshevich, Masatomo Fujiwara and Alexander Kats
- **Due Date:** 25-Feb-2014
- Status: Ongoing
- **Milestone:** Manuscript describing the results of the humidity time lag assessment submitted to a journal.
- **Progress:** Test calculations were made by Larry Miloshevich. Will be restarted after finishing the paper describing the GRUAN RS92 data product.
- **Issues:** Waiting for the GRUAN Lead Centre for further actions.

(2) The use of auto-launchers

- **Task:** Assess the effects of the use of auto-launchers compared to manual launches on measurement uncertainty estimates for radiosondes.
- Main Contact: Rigel Kivi, Nobuhiko Kizu, Fabio Madonna
- **Due Date:** 30-Nov-2014
- Status: Ongoing
- **Milestone:** *Publication in the peer reviewed literature.*
- **Progress:** Information has been summarized at Sodankyla (Kivi), Potenza (Madonna), and Tateno (Kizu)
- Issues: None

(3) Controlled descent mechanisms

• **Task:** Assess controlled descent mechanisms for balloon payloads and issues around use of descent data

- Main Contact: Rolf Philipona, Dale Hurst and Masatomo Fujiwara
- **Due Date:** 30-Jun-14. Presentation at ICM-6. (31-Dec-2014 for a document adoptable across GRUAN)
- Status: Ongoing
- **Milestone:** Manuscript(s) detailing operational considerations for controlled descents submitted to a journal or detailed in a GRUAN Report. If deemed applicable, a technical document that supports the adoption of controlled descent across GRUAN.
- **Progress:** Regular descent sounding is made at Boulder and Lauder. Some experiments were made at Lindenberg, Payerne, NCAR (and under a tropical project named SOWER).
- **Issues:** Still in the experimental phase.

(4) *Multi-payload launch configurations*

- **Task:** Assess multi-payload launch configurations for GRUAN usage.
- Main Contact: Hannu Jauhiainen and Masatomo Fujiwara
- **Due Date:** 30-Jun-2014
- Status: Ongoing
- **Milestone:** Document detailing the issues surrounding multipayload soundings to be drafted and submitted either to peer reviewed literature (first choice) or to WG-GRUAN for review as a TD
- **Progress:** A questionnaire sheet was sent (and re-sent) to several groups, and some responses have been received
- **Issues:** Need some more time to prepare a draft for circulation within the GRUAN community for comments

(5) *Define the non-RS92 data collection client requirement*

- **Task:** Define the non-RS92 data collection client requirement, identify the central data processing facility, and initiate data flow.
- •
- Main Contact: Holger Vömel, Michael Sommer, Rolf Philipona, Lead Center, Radiosonde task team
- **Due Date:** *1-Sep-2015*
- Status: Ongoing
- **Milestones:** Assessments of non-RS92 data collection client requirements. Data flow through NCDC portal
- **Progress:** First tests with RS-Launch client to submit non-RS92 data to the Lead Center. Built up of data processing facility and data files with final product and uncertainties of each parameter for non-RS92 radiosondes.
- **Issues:** Submission of Meteolabor radiosonde data in preparation.

GRUAN Data Product from Swiss Radiosonde

Define GRUAN Data Product for Sounding Flight

- Operational flight with SRS-C34
- Operational flight with SRS-C34 + Ozone
- GRUAN multisounding with SRS-C34/SnowWhite + Vaisala

Use GRUAN RsLaunchClient to

- Configure the sounding flight
- Define radiosondes and ground stations
- Define calibration and ground check instruments
- Add flight meta data and weather information
- Add .csv data file from SRS-C34 radiosonde (PAY_GRUAN_001....csv)
- Add data file from Vaisala (Dc3db...)

Submit .xml data file to LC using RsLaunchClient

SRS-C34 Data File .csv

- .csv data file : PAY_GRUAN_001_date.time.csv
- Includes station, date, time and software information
- Includes preflight check, ground check, meta data and weather information
- Includes all raw data
- Includes calculated final product with uncertainties for all final products

Data extraction at GRUAN Lead Center

- Meta data extraction and storage in GRUAN meta data base
- Final product and uncertainties extraction and storage in GRUAN archive
- Production of NetCDF file and submission to NCDC climate data center

Data Product Responsibility and Future Updates

- The GRUAN station Payerne is responsible for the final data product
- Future updates are made at Payerne and resubmitted to GRUAN LC

(6) Develop a UT/LS water vapour data product

- **Task:** Develop a UT/LS water vapour data product supported by appropriate technical documentation. The technical documentation must account for operation of CFH, NOAA FPH, Snow White and possibly FLASH-B.
- Main Contact: Holger Vömel, Rolf Philipona, Masatomo Fujiwara and Dale Hurst
- **Due Date:** 1-Mar-2014
- Status: Ongoing
- **Milestone:** Technical documentation completed for frostpoint hygrometer measurements
- Main Contact: Holger Vömel, and Dale Hurst
- **Due Date:** *1-Mar-2015*
- Status: Ongoing
- **Milestone:** Peer reviewed publication on frost point hygrometer GRUAN data product submitted.

(7) Define the frostpoint hygrometer data collection client requirement

- **Task:** Define the frostpoint hygrometer data collection client requirement, identify the central data processing facility, and initiate data flow.
- Main Contact: Holger Vömel, Lead Centre, Radiosonde task team
- **Due Date:** 1-Sep-2015
- Status: Not yet started
- Milestone: Data flow through NCDC portal
- Main Contact: Radiosonde task team
- **Due Date:** *1-Dec-2015*
- **Milestone:** Assessment of data usage, issues and potential improvements for this data stream
- **Progress:** Not yet started

(8) GRUAN data products for RS92 radiosondes

- **Task:** Finalize the definition of GRUAN data products for RS92 radiosondes: Technical document describing pre-launch procedure (TD5)
- Main Contact: Ruud Dirksen and Masatomo Fujiwara
- **Due Date:** 25-Feb-2014
- Status: Ongoing
- **Milestone:** *Review of the pre-launch ground-check/ground-calibration procedures*
- **Progress:** A questionnaire sheet was sent to the relevant GRUAN sites in August 2012
- **Issues:** There is a preliminary version of TD5 whose missing perspective is to consider the current practice at the relevant GRUAN sites. The questionnaire is for this purpose.

(9) Define the ozone sonde data collection client requirement

- **Task:** Define the ozone sonde data collection client requirement, identify the central data processing facility, and initiate data flow.
- Main Contact: Holger Vömel, Lead Centre Radiosonde task team
- **Due Date:** 30-Jun-2015
- Status: Not yet started
- Milestone: Data flow through NCDC portal
- Main Contact: Radiosonde task team
- **Due Date:** *30-Jun-2017*
- Status: Not yet started
- **Milestone:** Assessment of data usage, issues and potential improvements for this data stream

Summary

- 1. Time lag in RS92 humidity corrections
- 2. The use of auto-launchers
- 3. Controlled descent mechanisms
- 4. Multi-payload launch configurations
- 5. Define the non-RS92 data collection client requirement
- 6. Develop a UT/LS water vapour data product
- 7. Define the frostpoint hygrometer data collection client requirement
- 8. GRUAN data products for RS92 radiosondes
- 9. Define the ozone sonde data collection client requirement