

Howard University – Beltsville Site Report

5th GRUAN Implementation-Coordination Meeting De Bilt, Netherlands 23 February - 1 March 2013

Presented by Belay Demoz Howard University, Washington D.C.

Contributions:

Howard Univ.: D. Venable, E. Joseph, R. Sakai, M. Walker, S. Tesfai, L. Cooper

NASA/GSFC: D. Whiteman, K. Vermeesch

NOAA/NWS: J. Facundo; M. Hicks

NOAA/STAR: T. Reale

NOAA/NCDC: H. Diamond

Acknowledgment:

NASA, NOAA, NOAA/NCDC; NOAA Center for Atmospheric Studies

Students

Summary of activities

Beltsville Sounding Data, 2012 Statistics.

- RS92 soundings: RS92 → >1/week continues
- ozone soundings: EN-SCI → ~ 1/month
- RSLAUNCH In progress (plan to put all retroactively)

Soon to start:

- CFH: Periodic launches continue
- NOAA/NASA funding will allow for 1/month with lidar support.
 - Nighttime (~ Whiteman and Venable)

NWS/Sterling-Beltsville Collaboration

- More focused on ceilometer network expansion
- New DIAL water vapor testing.

NOAA/STAR Collaborations

- Soundings are targeted for NPP nighttime overpass.
- supported by Lidar/MWR etc (SASBE??)

Other: Involved in GATANDOR, Trend analysis, others tasks, WCRP etc.

Examples of **student** projects that could benefit GRUAN

Update-1: Raman Lidar Calibration+

Motivation: (Student project)

- As GRUAN moves forward with Raman lidar mixing ratio profile product, documenting the state of optics, calibration, etc becomes paramount.
- How can measurements of lidar (Raman) water vapor (GRUAN priority-2 product?) from different instruments be compared?
- GCOS112: A roving Raman lidar as a calibrator (Cost, feasibility)
- → Lamp Mapping Technique Use of a Scanning Standard Lamp Technique for Direct determination of Water Vapor Mixing Ratio Calibration Factor and more!

Lamp Mapping Technique (LMT)

A standard lamp is scanned across the aperture of the Lidar telescope. Signals received in wv and N_2 channels contain information for system diagnostics and calibration.

System Diagnostics

Glue Coefficients: PC=m AD

Ch	LMT	Traditional	Diff
	(10^{10}Hz/V)	$(10^{10}{\rm Hz/V})$	(%)
N_2	9.59±0.30	9.51±0.03	0.84
wv	10.6±0.2	10.5±0.01	0.95

WV Mixing Ratio Calibration, radiosonde (RS) and LMT

$$\left| \left(C_{LMT} - C_{RS} \right) / C_{RS} \right| \leq 5\%$$

Channel Overlap Functionradial distribution of LMT data

Technology is Transferable

GRUAN Update-2: Satellite Cal/Val (students launch)

Current data:

A lot of redundancy

IPW: GPS/NOAA

MWR: 2 & 39(2) Channel

Sonde: RS92

Raman: HURL/ALVICE

Ozone: 1/month

Update-3: "Redundancy" – GATNDOR?

Methods of using redundancy (Student project)

- Overlapping coverage leads to instrument error characterization
- Data gaps filled
- Check calibration degradation
- Physics of retrieval: (e.g. MWR are very good in IPW but not so in profiling)

Instrument	2009	2010	2011	2012	Freq.	WVMR Units
Vaisala RS-92	x	X	X	X	varying	g/kg
MP-3051A	x	X	X	X	2 min	NA*
MP-3089A				X	2 min	NA*
2-Channel MWR	x	X	X		2 min	NA*
NOAA—GPS	x	X	X		30 min	NA*
HURL			Х		1 min	g/kg
NCAR DIAL				Х	20 min	g/cm ³

Update-3: Redundancy

- Example: 1-5 August 2006 data
 - Issues with lidar calibration constant
 - Redundancy we will use GPS to correct the lidar
 - We are looking at several IOP data like this to do the data check

Update-3: Redundancy

Preliminary evaluation of IPW instruments!

UPDATE-4: Wind comparisons

Wind - A forgotten priority-1 GRUAN variable? (Student project)

Analysis of multi-year wind trend data started.

Preliminary results include the following.

Summary:

- we are launching 1xwk; + remote sensing+...
- data will be in GRUAN data stream soon
- most of the work is being done by students.
- work that would could benefit GRUAN
- coordinated flight with NPP
- NIST tracable Raman Lidar Calibration tech.
- Contributing to other tasks.

END – Beltsville Report

WIND UPDATE: Wind comparisons continues

Sterling/NWS Vs Beltsville

Sugarioaf Mountain Park Clarisburg Barnesville Laytonsville Mantennace Strokkeitie

IPW Comparisons

- LWX1 (Sterling) Vs DCHU (Beltsville)
 - GPS-Sonde variations at Sterling is comparable to the GPS-GPS variations for Beltsville-Sterling.
 - GPS IPW may be used to scale mixing ratio profile variations.

39 –				SVI A COST	
Ratio	LWX/	RRS/	CFH/	RS92Corr/	
	DCHU	LWX	DCHU	DCHU	
Avg.	0.953	0.994	1.023	0.979	CHD
Std. Dev.	0.094	0.132	0.085	0.099	LWX1/DCHU
Pts.	5179	3030	18	119	

GRUAN ICM5, 23 February -1 March 2012