SIRTA and REUNION Observatories

Feasibility study to become GRUAN candidates

Contributions to French GRUAN discussion group

- CNRS/INSU/IPSL: M. Haeffelin, P. Keckhut, JC. Dupont
- CNRS/U. Réunion: J-L. Baray, F. Posny, J. Leclair-de-bellevue
- Météo-France: F. Besson, J. Parent-du-chatelet, M-G. Renaudin
- MODEM: P. Charpentier, R. Pépin, C. Craux

GRUAN ICM5 - De Bilt - 25 Feb - 1 March 2013

Outlook

- Summary of March 2012 February 2013 activities
 - Establishing national framework for GRUAN activities
 - Radiosonde activities
 - H20 Lidar activities
 - GPS activities
 - Inter-comparisons
- Proposed activities 2013-2015

March 2012 - February 2013 Activities

FRAMEWORK *March* 2012 - Feb 2013 Activities

Establishing a national framework for GRUAN activities:

- ROSEA: Network of Observatories for Surveillance of Atmospheric Water - Climate Applications (project validated in May 2012)
 - Radiosonde, Lidar, GPS
 - Includes GRUAN activities in France
 - SIRTA and Réunion Observatories part of ROSEA
 - Contributions from CNRS, U. Réunion, Météo-France, IGN
- IPSL & M-F convention with GRUAN objectives
 - Engaging in a feasibility study
 - Cooperation agreement (Sept 2012)
- IPSL & MODEM
 - Engaging in measurement uncertainty evaluation
 - Sharing of data and algorithms

Towards qualification of MODEM M10 sondes

RS

MODEM

- Enthusiastic about uncertainty evaluation of the M10 in GRUAN framework
- Discussion of M10 processing algorithm with IPSL
- Committed to provide raw data
- Committed to provide support with measurements and tests
- T: Thermistor U: Capacity sensor Precision GPS

Regularly perform dual sonde flights for inter-comparisons

RS measurements at La Réunion (21°S)

- Weekly by U. Réunion: 35-40 (PTU + O3) profiles submitted to SHADOZ network yearly
- PI: F. Posny (U. Réunion)
- SHADOZ and NDACC since 1998
- Motivated to implement GRUAN protocoles
- Transition from MODEM M2 to M10 in 2013
- ROSEA + NDACC field campaign in April 2013:
 - Lidar calibration (w. GPS + RS)
 - M2, M10, RS92 intercomparisons

 Daily by Météo-France using MODEM M10 since 2011

hPa

LIDAR H20 Lidar measurements at La Réunion (21°S)

New Raman Lidar at SIRTA (49°N)

IPRAL: IPSL Hi-Performance multiwavelength Raman Lidar for Cloud Aerosol Water Vapor Research

- Contributions to GRUAN (H20), ACTRIS (Clouds, Aerosols), EarthCARE (Clouds, Aerosols)
- 80% of funding obtained
- 6-month pre-design study to match specifications and technical solutions (IPSL + Gordien Strato + Raymetrics)
- Manufacture fall 2013
- Measurements spring 2014

Project PI: M. Haeffelin (IPSL)

	Specs	
Telescope (near field)	150 mm diameter	
Telescope (far field)	500m diameter	
Laser Energy	2000 m/pulse	
	(375 mJ/pulse at 355 nm)	
Laser Repetition Rate	30 Hz (10 Hz optional)	
Laser λ	1064, 532, 355 nm	
Overlap ⁽¹⁾	3500 m (far field telescope)	
	150 m (near field telescope)	
Depolarization	@ 355 and 532 nm	
Depol. Calibration	+/- 45 degree method	
Raman Nitrogen	Yes (607 and 387 nm)	
Raman Water Vapour	Optional	
Pre-trigger	Yes	
Optical Triggering	Optional	
Detection mode	Analog	Photon
Backscatter signal	Yes	Yes
Raman Signal	Yes (Nitrogen)	Yes
Upgradability ⁽²⁾	Yes	
Deployment Type ⁽³⁾	Vertical	
Eye-safe	No	
P	erformance	
SNR ⁽⁴⁾		
Backscatter Signal	>100 @ 15 Km (Day, 10 min)	
Raman Signal Nitrogen	>3 @ 7-8 Km (Day, 15 min)	
	>3 @ 10-12 Km (Night, 15 min)	
Raman Signal Water Vapor	>3 @ 2-3 Km (Day, 20 min) >3 @ 10-12 Km (Night,20 min)	
Powe	er Consumption	
Voltage	220	
Power Consumption ⁽⁵⁾	5 KW	
Dim	ensions (mm)	
ISOBOX	ISOBOX 6000 x 3000 x 2500 (mm, L X W X H)	

GPS-IWV Retrieval Activities at SIRTA (49°N)

 GPS solutions from analysis in PPP mode (Gipsy-Oasis II, 6.0.2) at ENSG / IGN

• PPP = Precise Point Positioning

 \rightarrow Precise absolute coordinates for a single receiver obtained without the need of a second receiver at a known location or a receiver network [Zumberge et al., 1997 JGR]

- Use of NASA / JPL products for satellite orbits and clocks, ambiguity resolution, earth orientation parameters, etc.
- Troposphere modeling :
 - Estimation of wet delay and horizontal gradients
 - VMF (derived from ECMWF 6h analysis) for a priori and delay elevation dependency [Boehm et al., 2006 JGR]
 - Delay and gradients are modeled as stochastic parameters (random walk of 5 and 0.5 mm/sqrt(h) resp. solution rate of 5 min)
- Operational processing at day + 2 (rapid solution) and day + 12 (final solution) (according to NASA / JPL products)
- Conversion ZWD to IWV using VMF mean temperature (derived from ECMWF 6h analysis)
- Advantages w.r.t relative strategy :
 - No processing induced correlations in troposphere estimates for the different stations
 - Processing time scales linearly with the number of stations
 - Each station is processed independently of the others
 - The consideration of a new station do not require the analysis of the whole network

GPS

GPS-IWV Retrieval Activities at SIRTA (49°N)

GPS

1 year inter-comparison between GPS-IWV and Radiosonde Bias = -0.34 kg.m⁻² / Std Dev = ± 1.71 kg.m⁻²

RS-GPS-LIDAR Campaign at OHP

To improve Lidar calibration using GPS for water vapor retrievals

Next inter-comparison campaign: April 2013 in La Réunion PI: P. Keckhut (IPSL)

Proposed 2013 - 2015 Activities

2013 - 2015 Activities

Necessary steps to validate French contribution

- MODEM M10 sonde uncertainty evaluations:
 - IPSL + MODEM + LC: develop test strategy
 - Perform tests and compute uncertainties
- GRUAN procedures in Météo-France
 - Evaluate impact of GRUAN procedures (finance, personnel): ground-check, meta-data collection, regular dual-sonde flights

Further developments:

- Develop data processing software for M10 sonde
- Implement GRUAN procedures at SIRTA (M-F RS) & La Réunion (U. Réunion RS)
- Implement submission to LC
- Go through GRUAN certification
- Redundant measurement activities (sondes, H20 Lidar, GPS)

2014-15

2013-14

CNCS INSU

Toujours un temps d'avance

Operational RS

Procurement procedures

Tests, identification and quantification of measurement errors

> Implementation specific algorithms to process RS data

Data storage and dissemination

Definition of methods

training

Conclusions

- Established a national framework for GRUAN activities
- Contributions from: IPSL, U. Réunion, Météo-France, MODEM, IGN
- GRUAN-type activities exist already at SIRTA and La Réunion
- 2013 = feasibility study
 - M10 sonde uncertainty evaluations
 - Validation by Météo-France of GRUAN procedures
- GRUAN certification towards 2014-2015

French Operational Radiosonde Network

operates surface and upper air operational (24/7) networks including 15 radiosonde sites around the world (~24 sondes per day: > 8500 sondes/yr)