

Satellite Products Cal/val and Climate Research Support using GRUAN

Tony Reale, Bomin Sun, Frank Tilley and Michael Pettey

NOAA Center for Satellite Applications and Research (STAR) College Park, Md

Outline

- TT5 tasks addressed in this PPT
- NPROVS to GPROVS
- GPROVS objectives including proposal for Ancillary profiles concurrent with RAOBs in air and satellite overpass ... SASBE
- Examples of GRUAN monitoring and utility to monitor other platforms using GRUAN 2011 RAOBS ... LIN vs TWP
- K profile uncertainty analysis ... LIN vs TWP
- Review of past work using NPROVS for Climate

STA	Center for S Application	Satellite is and Research e of Research and Applications	5		
Task 1: Ir Main Cor Milestone Progress temperatu deployed	nventories of Retrievals ntact: Reale/Schroder e: TBA : Available legacy reaure and moisture profilin Suomi-NPP. Associate Issues: None	and Products from s al-time derived satelling suitable for validation ad meta-data and clin	atellites Due Date: ICM-x ite products have been ion exercises at GRUAI nate oriented legacy pro	Status: Ongoir identified for atmosp N sites including tho oducts still being pur	ng oheric se from newly rsued
Task 2: Va Main Cont Milestone: Progress: NPP Envir as cal/val p Issues: Task 3: Va Main Cont Milestone: Progress: collocated satellite pro Issues: Satellite ov	alidation Strategies and act: T. Reale January 2013, Concurred with Suor commental Data Record (program component to convent alidation Strategies and act: Tony Reale TBA Successful access/c with conventional sonder ofiles including prelimina Access to ECMWF (erpass	Results (Satellite): C Due Date: ICI NOAA/JPSS mi NPP cal/val team (EDR) for atmospher determine product ad Results (Satellite): G Due Date: ICI compilation of GRUAN e and satellite observ ary "K" profiles based NWP) and GRUAN A	oordination with JPSS M-x Suomi-NPP Products C members to pursue op ic temperature and moi herence to specification RUAN Products Valida M-X Status: C N RAOB data from NCE vations and completed a d on GRUAN uncertaint Ancillary Profiles colloca	Cal/val team Status: Ongoing Compliance Review I portunities for routin sture soundings at C ns tion (GPROVS) Ongoing DC and LC for 2011 analysis comparing I y estimates ated to sondes and S	Report e validation of SRUAN sites and 2012, RAOB and Suomi-NPP
Task 18: Su Main Conta Milestone: Progress: dedicated of sonde meas FTIR/MW pr Issues:	uitability of Deployed Eq act: Tobin/Reale January 2013, D. Tobin with SUOMI- bservations at Suomi-N surements to calculate S roducts validation; prelin NPP dedicated ARM	uipment: Site Atmos NOAA/JPSS S NPP cal/val team (a PP overpass to serve SASBE with focus on minary results expect Observations do not	pheric State Best Estim Jue Date: TBA Suomi-NPP Products Co nd J Dykema) compiling e as basis to develop " atmospheric temperatu ted by early summer 20 contain GRUAN sanct	ate (SASBE) Sta ompliance Review R g/ processing ARM recipe(s)" of GRUAN ure and moisture for 013 ioned uncertainty es	tus: Ongoing eport (and Beltsville) J ancillary and NPP satellite timates

3

NORR

NOAA Products Validation System (NPROVS)

	ARM-TWP	ARM-SGP	ARM-N SA		ARM- TWP	ARM-SGP	ARM-NSA	PMRF	BCCSO	NOAA AEROSE
Locatio n	Manus Island, Papua New Guinea	Ponca City, Oklahoma, USA	Barrow, Alaska, USA	Location	Manus Island, Papua New Guinea	Ponca City, Oklahoma, USA	Barrow, Alaska, USA	Kauai, Hawaii, USA	Beltsville, Maryland, USA	Tropical North Atlantic Ocean
	Tropical Pacific Warm Pool, Island	Midlatitude Continent, Rural	Polar Continent	Regime	Tropical Pacific Warm Pool, Island	Midlatitude Continent, Rural	Polar Continent	Tropical Pacific, Island	Midlatitude Continent, Urban	Tropical Atlantic, Ship
	90	180	180	Planned N	90	180	180	40	_	≈ 60–120
	42	92	93	Launched	42	92	93	40	23	2
	-	88	90	Launched	_	88	90	_	_	0
Time Frame	Aug- present	Jul-present	Jul-present	Time Frame	Aug- present	Jul-present	Jul- present	May, Sep	Jun–Jul, Sep– present	Jan-Feb 2013

NPP CrIMSS EDR ICV Dedicated RAOB Sites

Additional "reference" from ongoing JPSS Suomi-NPP cal/val program ⁶

GPROVS Scope

- Monitor GRUAN profiles from NCDC (w/ Michael S)
- GRUAN profiles help determine Satellite product adherence to specification
 - coordination within Suomi-NPP cal/val team (Tobin ... Belay)
 - process dedicated RS92 (also CFH...) at ARM and other (slide 6) with GRUAN software
- Develop uncertainty applications (K profiles...)
- Integrate Ancillary and RAOB profiles f/GRUAN sites (w/uncertainty...)
 - Schedule ancillary profiles with RAOB and sat overpass (NPP + COSMIC), respectively
 - append sat radiances (FTIR and MW) to vertical column
 - append ECMWF
 - utilize available satellite synchronized launches (see launch schedule tables)

GPROVS Objective (cont)

- SASBE with associated impact studies (Dave Tobin, John D ...)
- Maintain long term collocation datasets (+NPROVS)
 - GATNDOR interaction
 - Climate support
 - Publications on spatial/temporal mismatch impact
- Demonstrate / Utility of COSMIC as stratosphere T reference (and tropopause)
 - compare in stratosphere to FTIR and MW from satellite
 - develop COSMIC anchored collocations (currently RAOB anchored)
 - publications on radiation correction anomalies

Results from preliminary GPROVS using GRUAN 2011 RAOBS integrated into NPROVS

Collocations of GRUAN Sonde, GTS Sonde and COSMIC; 2011 ¹⁰

STAR Center for Satellite Applications and Research formerly ORA – Office of Research and Applications

Differences vs GRUAN RAOB

11

Mainly Vicinity of Lindenberg, Germany

GRUAN Sonde, NWP and COSMIC, respectively, -minus-GTS Sonde¹³

Introducing new "K" profiles analysis into GPROVS

Consistency in a finite atmospheric region

Co-location / co-incidence:

Determine the variability (σ) of a variable (m) in time and space from measurement or model

Two observations on different platforms are consistent if

 $|\mathbf{m}_1 - \mathbf{m}_2| < k\sqrt{\sigma^2 + u_1^2 + u_2^2}$

This test is only meaningful, i.e. observations are co-located or co-incident if:

$$\sigma < \sqrt{u_1^2 + u_2^2}$$

... GATNDOR Toolbox to routinely compute u and sigma

Validation: Redundancy and Consistency RUAN stations should provide redundant

 GRUAN stations should provide redundant measurements

$$\left| m_1 - m_2 \right| < k \sqrt{u_1^2 + u_2^2}$$

- Redundant measurements should be consistent:
 - No meaningful consistency analysis possible without uncertainties
 - \checkmark if m₂ has no uncertainties use u₂ = 0 ("agreement within errorbars")

$ m_1 - m_2 < k \sqrt{u_1^2 + u_2^2}$	TRUE	FALSE	significance level
k=1	consistent	suspicious	32%
k=2	in agreement	significantly different	4.5%
k=3	-	inconsistent	0.27%

GATNDOR Toolbox ...

K = (X – GRUAN) / GRUAN Uncertainty

1) Temperature

2) Water Vapor Mix Ratio ... MRo /MRs RH

Center for Satellite Applications and Research formerly ORA – Office of Research and Applications

Lin day

NOAA

137 Leve	el	Pressure	GRUAN	Uncertainty	RAOB		GES		CESR		COSMIC		IASI	
138	1	1.08		,									232.52	
139	2	2.75									226.58		225.19	
140	3	4.13									222.23		217.72	
141	4	5.40				n					219.70		213.18	
142	5	6.42									216.31		211.44	
143	6	8.23									212.56		209.97	
144		10.26	210.10	0.41	200.07	0.57	211.12	2.50	211.20	2.12	211.51	2.20	209.38	0.00
145	8	13.70	210.10	0.41	209.87	0.57	211.13	2.50	211.39	3.12	211.49	3.38	210.13	0.08
140	10	26.55	211.05	0.38	211.47	0.48	211.19	0.17	211.39	0.09	211.00	2.92	211.40	0.14
148	11	37.65	213.57	0.34	213.42	0.52	212.05	2.62	213.30	0.14	210.93	3.86	211.07	6.09
149	12	52.00	213.97	0.27	213.89	0.29	212.91	3.97	213.47	1.86	212.66	4.92	212.14	6.87
150	13	72.05	213.24	0.24	212.87	1.56	213.41	0.71	213.54	1.23	213.37	0.51	213.75	2.13
151	14	93.10	214.51	0.22	214.35	0.73	213.95	2.59	213.98	2.45	214.13	1.77	215.72	5.55
152	15	114.30	215.62	0.20	214.93	3.48	215.59	0.16	215.53	0.49	215.79	0.85	218.06	12.31
153	16	133.95	219.38	0.19	219.20	0.95	219.45	0.37	219.15	1.21	219.54	0.80	220.29	4.69
154	17	151.35	222.97	0.18	222.94	0.13	223.18	1.15	222.71	1.39	221.60	7.45	221.77	6.51
155	18	175.35	224.94	0.17	224.90	0.22	224.29	3.77	224.43	2.95	222.86	12.09	223.01	11.22
156	19	206.85	224.41	0.16	223.97	2.65	224.37	0.24	224.49	0.51	223.59	4.96	222.78	9.87
157	20	248.15	222.75	0.15	222.32	2.88	222.22	3.55	222.73	2.00	219.25	23.55	220.55	12.62
150	21	293.50	223.04	0.14	222.07	2.03	221.42	7.06	222.49	8.81	219.45	25.09	221.14	11 21
160	23	375.50	226.45	0.13	226.29	1.18	227.95	11.09	227.08	4.63	229.00	18.87	228.94	18.43
161	24	442.65	234.39	0.13	234.32	0.56	234.69	2.23	234.08	2.36	237.08	20.39	235.87	11.19
162	25	506.55	241.48	0.13	241.33	1.18	241.57	0.74	241.36	0.90	244.58	24.23	242.08	4.69
163	26	576.35	248.55	0.13	248.27	2.18	248.44	0.80	248.27	2.16	250.20	12.79	248.09	3.57
164	27	650.55	255.14	0.12	254.70	3.63	254.69	3.72	254.55	4.88	256.21	8.84	253.71	11.84
165	28	730.65	257.18	0.12	256.96	1.86	257.80	5.30	257.47	2.49	261.80	39.15	257.74	4.77
166	29	828.15	259.62	0.13	259.46	1.31	260.18	4.38	260.14	4.05	261.92	18.11	262.49	22.58
167	30	989.30	267.51	0.13	267.40	0.82	267.85	2.56	267.92	3.15	268.07	4.21	270.39	21.67
100														
110	1	10.20									240.20		271.//	
111	8	13 70	239.90	0.08	239.65	3.09	240 45	6.88	240 41	6.45	239.15	0 40	239 13	9.75
110	0	10.70	2007.04	0.00	200.00	3.05	210.15	10.00	210.11	0.42	200.10	5.45	205.10	25.45
112	9	18.65	237.94	0.09	237.52	4.91	237.05	10.39	237.18	8.82	237.82	1.42	234.88	35.45
113	10	26.55	231.30	0.09	231.76	5.33	230.50	9.33	230.70	7.04	229.63	19.40	230.03	14.80
114	11	37.65	224.23	0.08	224.28	0.55	224.62	4.66	224.58	4.26	223.73	6.07	225.78	18.72
115	12	52.00	221 49	0.08	221 53	0 44	221 45	0.58	221 46	0.37	221 13	4 40	222 30	9.76
110	12	72.00	210.05	0.00	210.56	0.11	210.00	0.50	210.00	0.07	210.01	4.00	210.66	7.10
110	13	72.05	219.25	0.08	218.50	0.34	219.29	0.42	219.33	0.91	218.91	4.00	218.00	7.10
117	14	93.10	219.35	0.08	219.06	3.58	219.11	3.01	219.18	2.12	218.89	5.64	218.90	5.50
118	15	114.30	221.04	0.08	220.66	4.81	220.54	6.23	220.55	6.17	220.00	12.97	221.11	0.87
119	16	133.95	222.52	0.08	222.17	4.42	222.42	1.33	222.30	2.78	221.22	16.47	222.72	2.50
120	17	151.05	222.02	0.00	222.17	0.70	222.12	4.05	222.00	2.45	222.22	15 74	224.01	0.28
120	1/	151.35	223.27	0.08	223.21	0.78	223.07	4.90	223.47	2.47	222.02	15.74	224.01	9.20
121	18	175.35	223.71	0.08	223.89	2.17	224.28	7.10	224.03	3.93	223.70	0.11	225.60	23.68
122	19	206.85	224.42	0.08	224.63	2.59	224.64	2.68	224.51	1.12	222.88	18.92	225.24	10.17
123	20	248.15	224.18	0.08	224.27	1.02	224.08	1.25	224,53	4.30	222.12	25.58	223.02	14.43
124	21	202.50	222.00	0.00	221.27	2.02	222.00	1.25	221.00	E 14	222.12	20.00	220.02	26.07
124	21	293.50	222.95	0.08	222.70	2.38	223.08	1.50	223.30	5.10	221.07	23.04	220.81	20.97
125	22	328.85	223.10	0.08	222.71	4.93	223.13	0.46	223.41	3.99	222.15	12.13	221.03	26.30
126	23	375.50	224.03	0.08	223.97	0.80	223.78	3.09	223.95	1.00	225.36	16.31	224.05	0.25
127	24	442.65	228 88	0.00	228.80	0.15	228 78	1.09	228 70	2.06	231.24	26.18	230.66	19 70
100	27	F06 55	220.00	0.09	220.09	1.24	220.70	1.09	220.70	2.00	201.24	20.10	230.00	22.16
128	25	506.55	235.95	0.09	235.83	1.24	236.07	1.38	235.97	0.27	239.13	35.35	237.94	22.10
129	26	576.35	243.29	0.10	243.12	1.87	243.56	2.74	243.46	1.69	245.29	20.91	245.25	20.50
130	27	650.55	250,95	0.09	250.97	0.23	250,98	0.39	250.95	0.03	252.88	21.08	251.23	3.10
131	22	730.65	257 41	0.00	257 33	0.80	257 72	3 55	257.75	3.07	250.21	21.08	256.16	14 42
100	20	/ 30.05	207.41	0.09	207.00	0.09	237.72	5.55	201.10	5.97	209.01	21.90	250.10	0.11
132	29	828.15	263.66	0.09	263.45	2.28	263.96	3.31	264.20	5.90	268.37	51.31	262.91	8.11
133	30	989.30	272.03	0.09	272.07	0.52	271.34	7.71	271.93	1.13	}		270.37	18.55
134														19

Lin nite

STAR Center for Satellite Applications and Research formerly ORA – Office of Research and Applications

TWP day

											-			MINT NO.
1	Level	Pressure	GRUAN	Uncertainty	RAOB		GFS		CFSR		COSMIC		IASI	
2	1	1.08											242.24	
3	2	2.75											249.70	
4	3	4.13									238.26		239.96	
5	4	5.40									230.58		232.58	
6	5	6.42				n					225.91		228.70	
7	6	8.23				• •					226.93		224.69	
8	7	10.26									226.85		222.09	
9	8	13.70									223.66		220.65	
10	9	18.65									218.17		219.12	
11	10	26.55	214.70	0.42	214.82	0.28	213.20	3.55	213.92	1.85	214.33	0.87	216.11	3.33
12	11	37.65	212.37	0.38	212.02	0.93	211.91	1.22	212.13	0.62	210.87	3.95	211.97	1.05
13	12	52.00	204.97	0.33	205.19	0.66	205.72	2.26	205.44	1.42	204.97	0.00	206.08	3.34
14	13	72.05	197.11	0.30	197.30	0.63	197.64	1.79	197.38	0.90	195.95	3.89	197.12	0.05
15	14	93.10	188.21	0.26	188.18	0.11	188.21	0.02	188.43	0.85	188.92	2.70	190.23	7.67
16	15	114.30	194.80	0.24	194.53	1.13	193.77	4.27	193.81	4.09	193.82	4.03	192.02	11.48
17	16	133.95	200.91	0.23	200.73	0.79	199.83	4.71	199.91	4.35	198.64	9.92	197.78	13.65
18	17	151.35	204.66	0.22	204.47	0.86	204.85	0.87	204.86	0.94	204.48	0.81	203.68	4.44
19	18	175.35	212.17	0.21	212.14	0.16	212.59	2.03	212.55	1.83	213.04	4.17	211.79	1.83
20	19	206.85	221.90	0.20	221.81	0.46	222.14	1.22	222.04	0.73	222.81	4.61	221.76	0.71
21	20	248.15	231.35	0.19	231.47	0.63	232.33	5.23	232.20	4.53	230.68	3.62	232.34	5.32
22	21	293.50	241.12	0.17	241.04	0.43	241.33	1.22	241.21	0.53	241.01	0.64	241.75	3.62
23	22	328.85	247.22	0.18	247.13	0.52	247.56	1.93	247.48	1.49	247.93	4.02	247.94	4.08
24	23	375.50	255.55	0.16	255.36	1.13	254.93	3.75	254.97	3.51	255.29	1.60	254.80	4.53
25	24	442.65	263.24	0.15	263.35	0.77	263.26	0.16	263.30	0.40	263.63	2.61	262.99	1.61
26	25	506.55	270.01	0.14	269.94	0.48	269.52	3.44	269.61	2.78	268.42	11.11	269.16	5.96
27	26	576.35	276.43	0.13	276.63	1.56	276.14	2.22	276.31	0.95	274.62	14.14	274.61	14.25
28	27	650.55	280.01	0.12	280.03	0.22	280.00	0.04	280.04	0.30	279.07	7.69	279.80	1.68
29	28	730.65	284.90	0.12	284.86	0.34	283.32	13.22	283.59	10.89	285.10	1.71	284.73	1.37
30	29	828.15	289.71	0.12	289.56	1.28	288.83	7.70	289.12	5.14	290.25	4.66	289.92	1.78
31	30	989.30	296.19	0.11	296.06	1.14	296.15	0.30	296.21	0.18	296.07	1.02	296.53	2.99
32														

		10.70									224.25		222.25		
//	8	13.70									224.26		222.06		
78	9	18.65									223.38		222.01		
79	10	26.55	215.85	0.08	215.29	6.77	215.60	3.06	215.65	2.41	216.98	13.64	218.17	28.01	
80	11	37.65	212.66	0.09	212.51	1.76	212.44	2.58	212.70	0.38	209.63	34.68	212.72	0.59	
81	12	52.00	205.88	0.10	205.61	2.61	205.43	4.38	205.72	1.54	205.71	1.70	204.88	9.81	
82	13	72.05	195.02	0.11	195.38	3.44	194.80	2.03	194.70	3.00	197.06	19.41	194.10	8.72	
83	14	93.10	187.08	0.10	189.86	28.80	189.69	27.07	189.49	25.05	188.52	15.00	189.25	22.56	
84	15	114.30	195.34	0.09	195.58	2.75	194.76	6.71	194.67	7.70	194.85	5.61	193.23	24.30	
85	16	133.95	201.89	0.08	202.01	1.43	201.66	2.72	201.62	3.18	201.39	5.99	199.59	27.34	
86	17	151.35	206.08	0.09	206.02	0.64	206.34	2.92	206.26	2.05	205.36	8.17	205.72	4.06	
87	18	175.35	213.82	0.09	213.63	2.21	213.34	5.56	213.35	5.38	212.52	14.87	213.83	0.05	
88	19	206.85	222.03	0.09	221.93	1.20	222.07	0.40	222.17	1.45	221.46	6.35	223.01	10.68	
89	20	248.15	232.89	0.09	232.88	0.11	232.56	3.67	232.73	1.81	232.52	4.06	233.05	1.78	
90	21	293.50	242.48	0.09	242.36	1.38	242.48	0.04	242.68	2.27	242.56	0.94	243.26	8.98	
91	22	328.85	249.52	0.08	248.98	6.33	248.51	11.84	248.71	9.48	249.26	3.08	249.58	0.69	
92	23	375.50	256.34	0.08	256.20	1.80	255.19	14.12	255.38	11.89	256.18	2.05	255.77	7.11	
93	24	442.65	262.13	0.09	261.89	2.71	262.99	9.89	262.77	7.36	262.77	7.44	262.92	9.14	
94	25	506.55	267.96	0.09	267.71	2.82	268.47	5.89	268.19	2.67	267.41	6.30	268.51	6.41	
95	26	576.35	275.06	0.08	274.86	2.46	274.66	4.93	274.65	4.94	274.09	11.93	274.28	9.51	
96	27	650.55	281.02	0.08	280.99	0.42	280.59	5.29	280.57	5.48	280.98	0.57	280.09	11.31	
97	28	730.65	285.74	0.08	285.55	2.48	284.81	11.59	284.74	12.47	286.25	6.32	285.43	3.97	
98	29	828.15	292.32	0.08	292.23	1.15	290.11	26.54	290.50	21.86	292.17	1.79	290.74	19.00	
99	30	989.30	296.57	0.09	296.57	0.06	297.33	8.75	297.27	8.04			295.66	10.56	
100														20	
														20	

TWP nite

Lindenberg 2011

Temperature

TWP 2011

Temperature

Climate Research Support Using Collocation Datasets (2008 to present ...)

1) Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt (2010), Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics, J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457.

2) Reale, A., B. Sun, F. Tilley, and M. Pettey (2012), NOAA Products validation System (NPROVS) *J. Atmos. Oceanic. Tech., 29, 629-645.*

3) Towards improved corrections for radiation-induced biases in radiosonde temperature observations Bomin Sun 1, Tony Reale 2, Steven Schroeder 3, Dian J. Seidel 4, and Bradley Ballish 5

1. I.M. Systems Group, Rockville, MD

- 2. NOAA NESDIS Center for Satellite Applications and Research, Md
- 3. Texas A & M University, College Station, TX
- 4. NOAA Air Resources Laboratory, College Park, MD
- 5. NOAA NCEP Central Operations, College Park, MD

Submitted to Journal of Geophysical Research-Atmospheres 13 October 24, 2012 14, Revised: February 21, 2013

Center for Satellite

COSMIC as Reference ... Tdry ... 0.1 K accuracy is stratosphere ... ²⁵

Sonde types flown in global operational network (2008-2011)

Operational raobs are used for the analysis. Data for most of the sonde types already experienced radiation corrections at the field sites using schemes provided by manufactures, etc. Sun, 2010

Vaisala RS92 difference from COSMIC T

All sample

Raob-minus-COSMIC Sun, 2011 27

Seasonal variation in bias is bigger at nighttime: Summer relatively warm, no bias night winter ?! GRUAN interest ... Sun 2011

formerly ORA — Office of Research and Applications

• Better use of operational RAOBS in:

Center for Satellite

Applications and Research

- NWP assimilation and forecasting
- Upper air climate change detection
- Satellite calibration/validation

formerly ORA – Office of Research and Applications Collocation Mismatch Impact:

Time Mismatch Impact

Center for Satellite

Applications and Research

Distance Mismatch Impact

D23104

SUN ET AL.: RADIOSONDE AND GPSRO ANALYSIS

D23104

Figure 8. Dependence of 300 hPa standard deviation of raob-minus-COSMIC temperature difference on collocation mismatch for (a) time mismatch and (b) distance mismatch. Solid curves represent $SD_{\Delta T}$, and dotted curves denote the number of collocations used to compute $SD_{\Delta T}$.

	NIGHT	DUSK/DAWN	LOW	HIGH	ALL
Clear	0.03 (1.81, 9745)	0.33 (1.93, 2304)	0.41 (1.90, 1895)	0.64 (1.77, 3050)	0.22 (1.85, 16994)
Cloudy	-0.02 (1.89, 15433)	0.23 (1.88, 9898)	0.34 (1.88, 9862)	0.46 (1.73, 17902)	0.25 (1.84, 53095)

Table 2c. RAOB-minus-COSMIC mean biases (K) and standard deviations (K) for different cloud sky conditions and solar elevation angles averaged over 15-70 1 hPa. The statistics were computed from countries/regions where cloud information is included in radiosonde reports (see text for detail). Values in parenthesis are 2 standard deviation and sample size

Sun et al, 2013 ... revised Feb 2013 .. still under review

- GPROVS Interface for radiosonde (RS92)
- Site (+ship) expansion via Suomi-NPP cal/val program to validate product adherence to spec ... process dedicated RS92 using GRUAN
- GRUAN to provide "Ancillary" at times of raob and/or satellite (+COSMIC) overpass (include appending Sat MW and FTIR...) (TTAM, Scheduling, GATNDOR)
- Append ECMWF at GRUAN at time of assimilation (similar to NOAA GFS)
- SASBE, K profiles
- Archive of Collocation data records useful for climate

Extras

Applications and Research

Center for Satellite

ſĄ'

formerly ORA - Office of Research and Applications

H20 Mix Ratio

CAR Center for Satellite Applications and Research

formerly ORA - Office of Research and Applications

K values for T (solid) and H20 (dash) on extreme left using upper scale

Applications and Research formerly ORA – Office of Research and Applications

Center for Satellite

A

Mainly Vicinity of Lindenberg, Germany

GRUAN Sonde, NWP and COSMIC, resepectively, -minus-GTS Sonde 38

CriMSS Performance Specification

Atmospheric Vertical Temperature Profile (AVTP) Measurement Uncertainty – Layer Average Temperature Error

PARAMETER	THRESHOLD
AVTP Clear, surface to 300 mb	1.6 K / 1-km layer
AVTP Clear, 300 to 30 mb	1.5 K / 3-km layer
AVTP Clear, 30 mb to 1 mb	1.5 K / 5-km layer
AVTP Clear, 1 mb to 0.5 mb	3.5 K / 5-km layer
AVTP Cloudy , surface to 700 mb	2.5 K / 1-km layer
AVTP Cloudy , surface to 700 mb AVTP Cloudy, 700 mb to 300 mb	2.5 K / 1-km layer 1.5 K / 1-km layer
AVTP Cloudy , surface to 700 mb AVTP Cloudy, 700 mb to 300 mb AVTP Cloudy, 300 mb to 30 mb	2.5 K / 1-km layer 1.5 K / 1-km layer 1.5 K / 3-km layer
AVTP Cloudy , surface to 700 mbAVTP Cloudy, 700 mb to 300 mbAVTP Cloudy, 300 mb to 30 mbAVTP Cloudy, 30 mb to 1 mb	2.5 K / 1-km layer 1.5 K / 1-km layer 1.5 K / 3-km layer 1.5 K / 5-km layer

Atmospheric Vertical Moisture Profile (AVMP)

PARAMETER	THRESHOLD
AVMP Clear, surface to 600 mb	Greater of 20% or 0.2 g/kg / 2-km layer
AVMP Clear, 600 to 300 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Clear, 300 to 100 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Cloudy, surface to 600 mb	Greater of 20% of 0.2 g/kg / 2-km layer
AVMP Cloudy, 600 mb to 400 mb	Greater of 40% or 0.1 g/kg / 2-km layer
AVMP Cloudy, 400 mb to 100 mb	Greater of 40% or 0.1 g/kg / 2-km layer