Introduction 000 Co-location Model

Beltsville case study

RH Model

Uncertainty decomposition

GATNDOR Topic Collocation Uncertainty in Vertical Profiles: Statistical Functional Regression Approach

Alessandro Fassò*

Joint work with: B. Demoz, R. Ignaccolo, F.Madonna.

 $\hat{*}$ University of Bergamo - DIIMM - alessandro.fasso@unibg.it

Introduction ●○○	Co-location Model 00000	Beltsville case study	
Scientific questions			

We would like to answer the following questions:

- **I** is the co-location uncertainty related to environmental factors?
- is the co-location uncertainty related to the paired trajectories distance?

DIIMM-UNIRG

- 3 Is the co-location uncertainty related to height?
- 4 Is uncertainty a static or dynamic concept?
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Introduction ●○○	Co-location Model 00000	Beltsville case study	
Scientific questions			

We would like to answer the following questions:

- 1 is the co-location uncertainty related to environmental factors?
- **2** is the co-location uncertainty related to the paired trajectories distance?

DIIMM-UNIRG

- 3 Is the co-location uncertainty related to height?
- 4 Is uncertainty a static or dynamic concept?
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Introduction ●○○	Co-location Model 00000	Beltsville case study	
Scientific questions			

We would like to answer the following questions:

- 1 is the co-location uncertainty related to environmental factors?
- 2 is the co-location uncertainty related to the paired trajectories distance?

DIMM-UNIBG

- 3 Is the co-location uncertainty related to height?
- 4 Is uncertainty a static or dynamic concept?
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Introduction ●○○	Co-location Model 00000	Beltsville case study	
Scientific questions			

We would like to answer the following questions:

- 1 is the co-location uncertainty related to environmental factors?
- 2 is the co-location uncertainty related to the paired trajectories distance?

DIIMM-UNIBG

- 3 Is the co-location uncertainty related to height?
- 4 Is uncertainty a static or dynamic concept?
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Introduction ●○○	Co-location Model 00000	Beltsville case study	
Scientific questions			

We would like to answer the following questions:

- 1 is the co-location uncertainty related to environmental factors?
- 2 is the co-location uncertainty related to the paired trajectories distance?

DIIMM-UNIBG

- 3 Is the co-location uncertainty related to height?
- 4 Is uncertainty a static or dynamic concept?
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Introduction ○●○	Co-location Model	Beltsville case study	
Introduction			

Introduction

"... The primary goals of GRUAN are to **provide vertical profiles** of reference measurements suitable for reliably detecting changes in global and regional climate on decadal time scales" (GRUAN Manual V7).

- We consider here an empirical approach to uncertainty analysis with no reference to a priori metadata but relying on data by means of a statistical modelling approach.
- Stochastic structure of vertical profiles is important from the statistical point of view not only for facing the co-location problem but also for uncertainty analysis and decomposition of vertical profiles in general.

A (1) > A (1) > A

DIIMM-UNIBG

Introduction ○●○	Co-location Model	Beltsville case study	
Introduction			

Introduction

"... The primary goals of GRUAN are to **provide vertical profiles** of reference measurements suitable for reliably detecting changes in global and regional climate on decadal time scales" (GRUAN Manual V7).

- We consider here an empirical approach to uncertainty analysis with no reference to a priori metadata but relying on data by means of a statistical modelling approach.
- Stochastic structure of vertical profiles is important from the statistical point of view not only for facing the co-location problem but also for uncertainty analysis and decomposition of vertical profiles in general.

A (1) > (1) > (1)

Introduction ○○●	Co-location Model 00000	Beltsville case study	
Outline			

Outline

DIIMM-UNIBG

- 1 Heteroskedastic functional regression co-location model
- 2 Application to relative humidity from Beltsville-Sterling radiosonde

Alessandro Fassò*

Co-location Model	Beltsville case study	

The Co-location Model

Let y denote the measurement of a physical quantity, e.g. an ECV, along a trajectory through the atmosphere.

$$y\left(extsf{s},t
ight)$$
 , $extsf{s}=\left(extsf{lat}, extsf{lon}, extsf{h}
ight)$, $extsf{h}\geq h_{0}$, $extsf{t}\geq t_{0}$

The space-time vertical trajectory can then be described by the parametric representation $h \rightarrow (s_h, t_h)$ for $h_0 \leq h \leq h_1$.

$$y\left(\cdot\right) = y\left(h\right)$$

DIMM-UNIBG

Alessandro Fassò*

Co-location Model	Beltsville case study	

We consider a vertical profile as a single object described by a smooth function:

$$\mu(h)$$
, $h \ge h_0$.

and the standard measuement error decomposition of observation profile launched at time t_j from place s_j , j = 1, ..., n, is given by a random function

$$y_{j}\left(\cdot\right)=\mu_{j}\left(\cdot\right)+\varepsilon_{j}\left(\cdot\right)$$

where $\mu(\cdot)$ is the "true" smooth profile and $\varepsilon(\cdot)$ is the zero mean measurement error with variance $\sigma_{\varepsilon}^{2}(\cdot)$.

▲□ → ▲ 三 → ▲ 三 →

DIIMM-UNIBG

Alessandro Fassò*

Co-location Model	Beltsville case study	

Suppose we are comparing two instruments, e.g. radiosondes, at the same height and giving measurements y and y^0 respectively. Hence we have

$$\Delta y(\cdot) = y(\cdot) - y^{0}(\cdot) = \Delta \mu(\cdot) + \Delta \varepsilon(\cdot)$$

where

$$\Delta \mu = \mu - \mu^0$$

is the co-location drift and

$$\Delta \varepsilon = \varepsilon - \varepsilon^0$$

is the co-location measurement error, with

$$\textit{Var} (\Delta \varepsilon) = \sigma_{\varepsilon}^2 + \sigma_{\varepsilon^0}^2 = 2\sigma_{\varepsilon}^2.$$

DIIMM-UNIBG

Alessandro Fassò*

	Co-location Model ●0000	Beltsville case study	
The Heteroskedastic N	Model		

The Heteroskedastic Functional Regression Model for Co-location

$$\Delta \mu \left(\cdot \right) = \beta_{0} + \beta \left(\cdot \right)' x \left(\cdot \right) + \omega \left(\cdot \right)$$

where

- β_0 is the inter-site constant co-location bias.
- $x(\cdot)$ is a set of functional environmental factors.
- $\omega\left(\cdot
 ight)$ is an heteroskedastic error component: namely

$$\sigma_{\omega}^{2}\left(\cdot|x
ight) = Var\left(\omega\left(\cdot
ight)|x
ight)$$

For example a log-linear component

$$\sigma_{\omega}^{2}\left(\cdot|x
ight)=\exp\left(\gamma\left(\cdot
ight)'x\left(\cdot
ight)
ight).$$

DIMM-UNIBG

Alessandro Fassò*

	Co-location Model ○●○○○	Beltsville case study	
The Heteroskedastic	Model		

The Global Uncertainty Profile

$$U\left(\cdot
ight) =V$$
ar $\left(\Delta y\left(\cdot
ight)
ight)$

Its decomposition extends the heteroskedastic uncertainty decomposition of Fassò et al. (2003) and is given by

$$Var\left(\Delta y\left(\cdot
ight)
ight)=U\left(\cdot
ight)=U_{\Delta\mu}\left(\cdot
ight)+\sigma_{arepsilon}^{2}$$

where, $\textit{U}_{\mu}\left(\cdot\right)=\textit{Var}\left(\mu\left(\cdot\right)\right)$ defines the apportionable co-location error.

DIIMM-UNIBG

Alessandro Fassò*

	Co-location Model ○○●○○	Beltsville case study	
Uncertainty Decompo	sition		

Uncertainty Decomposition

$$U_{\Delta\mu}\left(\cdot\right) = E\left(\left(\Delta\mu\left(\cdot\right)\right)^{2}\right) = \beta_{0}^{2} + U_{x}\left(\cdot\right) + U_{\omega}\left(\cdot\right) + U_{\hat{\beta}}\left(\cdot\right).$$

DIIMM-UNIBG

where

- β_0^2 is the inter-site error
- $U_x + U_\omega$ is the environmental error
- $U_{\hat{\beta}}$ is the sampling error.

Alessandro Fassò*

	Co-location Model ○○○●○	Beltsville case study	
Uncertainty Decompo	sition		

In particular U_x is the drift uncertainty and is given by

$$U_{x}(\cdot) = \hat{\beta}'(\cdot) \Sigma_{x}(\cdot) \hat{\beta}(\cdot)$$

The second component of the environmental error, namely U_{ω} , cannot be reduced by observing $x(\cdot)$ and is given by

$$U_{\omega}\left(\cdot\right) = E_{x}\left(\hat{\sigma}_{\omega}^{2}\left(\cdot|x\right)\right)$$

The sampling error is given by

$$U_{\hat{\beta}}(\cdot) = E\left(x(\cdot)'\Sigma_{\hat{\beta}}(\cdot)x(\cdot)\right)$$

DIIMM-UNIBG

where $\Sigma_{\hat{\beta}}(\cdot) = Var(\hat{\beta}(\cdot)|x)$ is the estimation functional variance covariance matrix of $\hat{\beta}(\cdot)$.

Alessandro Fassò*

Introduction 000	Co-location Model	Beltsville case study	
Uncertainty Decompo	osition		

Average Uncertainty

In order to get a simple global uncertainty decomposition, we sumarize the above uncertainty profiles by integrating over the vertical profile. This is given by

$$ar{U}=eta_0^2+ar{U}_x+ar{U}_\omega+ar{U}_{\hat{eta}}+\sigma_{arepsilon}^2$$

DIIMM-UNIRG

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	

The Beltsville Case Study

DIIMM-UNIBG

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	

Figure: Data profiles

э

DIIMM-UNIBG

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	RH Model	

Modelling of relative humidity

- The response variable used here is relative humidity and all the data from the other radiosonda and all but relative humidity from the "co-located" radiosonda are used as explanatory factors.
- The resulting co-location error analysis corresponds understanding the variability of relative humidity for fixed water vapour content in dry air mass.
- Information on location, distance and ECV's have been used as regressors for both μ and σ^2 and selected using suitable statistical model selection techniques.

DIIMM-UNIBG

Co-location Model 00000	Beltsville case study	RH Model	

Modelling of relative humidity

- The response variable used here is relative humidity and all the data from the other radiosonda and all but relative humidity from the "co-located" radiosonda are used as explanatory factors.
- The resulting co-location error analysis corresponds understanding the variability of relative humidity for fixed water vapour content in dry air mass.
- Information on location, distance and ECV's have been used as regressors for both μ and σ^2 and selected using suitable statistical model selection techniques.

▲ □ ▶ ▲ 三 ▶ ▲

DIIMM-UNIBG

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	RH Model	

Modelling of relative humidity

- The response variable used here is relative humidity and all the data from the other radiosonda and all but relative humidity from the "co-located" radiosonda are used as explanatory factors.
- The resulting co-location error analysis corresponds understanding the variability of relative humidity for fixed water vapour content in dry air mass.
- Information on location, distance and ECV's have been used as regressors for both μ and σ^2 and selected using suitable statistical model selection techniques.

< ∃ >

DIIMM-UNIBG

Co-location Model 00000	Beltsville case study	RH Model	

Co-location model (Beltsville - Sterling)

Mean component $R^2 = 88\%$

$$\Delta rh(\cdot) = 3.37 + \hat{\beta}_1(\cdot) rh^0(\cdot) + \hat{\beta}_2(\cdot) mr^0(\cdot) + \hat{\beta}_3(\cdot) \Delta mr(\cdot) + \hat{\omega}(\cdot) + \Delta \varepsilon(\cdot)$$

Skedastic component

$$\log \sigma_{\omega}^{2}(\cdot|x) = \frac{1.6}{(0.26)} + \hat{\gamma}_{1}(\cdot) p^{0}(\cdot) + \hat{\gamma}_{2}(\cdot) t^{0}(\cdot) + \hat{\gamma}_{3}(\cdot) rh^{0}(\cdot) + \\ + \hat{\gamma}_{4}(\cdot) \Delta p(\cdot) + \hat{\gamma}_{5}(\cdot) \Delta lon(\cdot) + \hat{\gamma}_{6}(\cdot) \Delta mr(\cdot) + \\ + \hat{\gamma}_{7}(\cdot) \Delta u(\cdot) + \hat{\gamma}_{8}(\cdot) \Delta v(\cdot)$$

DIIMM-UNIBG

Alessandro Fassò*

Figure: Beta functions for relative humidity co-location drift.

DIIMM-UNIBG

Alessandro Fassò*

Figure: Gamma functions for relative humidity co-location error ω^2 , Figure 1 of 2.

DIIMM-UNIBG

Alessandro Fassò*

Figure: Gamma functions for relative humidity co-location error ω^2 , Figure 2 of 2.

DIIMM-UNIBG

Alessandro Fassò*

Introduction 000 RH Model

Uncertainty decomposition

DIIMM-UNIBG

Uncertainty Component Profiles

Figure: Square-root uncertainty budget $\left(\sqrt{U}\right)$ for relative humidity.

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	Uncertainty decomposition

Average Uncertainty Components

Source		Ū	$\bar{U}\%$	$\sqrt{ar{U}}$
Natural variability	$\Delta \mu$	321		17.9
Inter-site error	eta_0^2	14	4.3%	3.37
Environmental Error (reducible)	X	269	83.6%	16.4
Environmental Error (irreducible)	ω^2	38	11.7%	6.1
Sampling error	β	0.5	0.1%	0.7
Measurement error	$\Delta \varepsilon$	0.8	0.2%	0.9

DIIMM-UNIBG

Alessandro Fassò*

Introduction	Co-location Model	Beltsville case study	Uncertainty decomposition

This approach is a viable method for detaild uncertainty decomposition

For example in our case study

- is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
- is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height? According to data the larger uncertainty is about 3'000m
- Is uncertainty a static or dynamic concept?

Yes and the skedastic function $\sigma_{\omega}^2\left(\cdot|x\right)$ may account for its variation

6 Are above points valid for all ECV? <-> < □ > < □ > < ≥ > < ≥ ><</p>

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - **2** is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height? According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation

Alessandro Fassò*

DIIMM-UNIBG

Co-location Model 00000	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - 2 is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height? According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation

5 Are above points valid for all ECV? 🛛 🖛 🖬 🖉 🖉 🖉 🖉 🕫

Alessandro Fassò*

DIIMM-UNIBG

Co-location Model 00000	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - **2** is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height?
 According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation
- 5 Are above points valid for all ECV? 《 🗆 🛛 《 🖻 🔪 🤹 🔊 🛇

Alessandro Fassò*

DIIMM-UNIBG

Co-location Model	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - 2 is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height?According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation

Alessandro Fassò*

DIIMM-UNIBG

Co-location Model	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - 2 is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height?
 According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation

5 Are above points valid for all ECV? - 《 마 > 《 문 > 《 문 > 《 문 > · 로 · · 오

Alessandro Fassò*

DIIMM-UNIBG

Co-location Model	Beltsville case study	Uncertainty decomposition

- This approach is a viable method for detaild uncertainty decomposition
- For example in our case study
 - is the co-location uncertainty related to environmental factors? These data show strong nonlinear correlation of *rh* on other variables
 - 2 is the co-location uncertainty related to the paired trajectories distance?

For these (limited spatial coverage and anisotropic) data, we found an EST-WEST effect on the skedastic component.

- Is the co-location uncertainty related to height? According to data the larger uncertainty is about 3'000m
- 4 Is uncertainty a static or dynamic concept? Yes and the skedastic function $\sigma_{\omega}^2(\cdot|x)$ may account for its variation
- 5 Are above points valid for all ECV?

Alessandro Fassò*

Co-location Model 00000	Beltsville case study	Uncertainty decomposition

Thanks for your attention

DIIMM-UNIBG

Alessandro Fassò*