GRUAN Radiosonde Task Team's Task

Guidance for Multi-Payload Launches at GRUAN Sites

Hannu Jauhiainen Masatomo Fujiwara

GRUAN 5th Implementation and Coordination Meeting De Bilt, Netherlands 25th February – 1 st March 2013

Contents

- Background and task objectives
- Goal: minimization of bias and deviation
- Uncertainty components of multi-payload launches
- Questionnaire sent to GRUAN stations
- Received rigging information from the stations
- Rigging alternatives review
- Next steps

Background and task objectives

- Background
 - For GRUAN observations, it is essential to control the data continuation at all times, including when there are any possible changes in the instruments
 - Data continuation is ensured by overlapping observations performed with dual/multi-sounding arrangement.
 - The currently measured parameters are temperature, water vapor, pressure, wind, and height, and the flight arrangement may have specific effects on the measurement of these parameters
- Objectives
 - From GCOS-149, 2011-12 GRUAN Work Plan: Develop best practice guidance for multi payload launches / Radiosonde Task Team
 - To adapt and take into use uniform methods for sonde-balloon rigging for GRUAN radiosonde observations.
 - GOAL 1: To agree on methods for sonde-balloon rigging for GRUAN radiosonde observations.
 - GOAL 2: To prepare instructions for sonde-balloon rigging
 - GOAL 3: To identify and to determine measurement uncertainty components on agreed rigging methods.

Goal: minimization of bias and deviation

Goal is to get the guidelines for dual (multiple) payload launches that

- 1) Minimize arrangement originated BIAS between the compared instruments
 - Data for the data continuity analysis should be valid
- 2) Reduce DEVIATION to level where less soundings would give statistical significant results
- 3) Minimize arrangement originated part of the measurement total uncertainty
 - Minimize "Common mode BIAS" between the instruments and the "truth"
 - Minimize "Common mode BIAS" between the instruments and the other observation methods
 - This is important when the data is used also as official GRUAN data
- As a given launces should be made safely and with high reliability in various weather conditions

Uncertainty components of multipayload launches

- Balloon (size, type)
 - Ascent rate and balloon movements
 - May have an effect to ventilation -> bias/deviation
 - Effect to the wind measurement (deviation)
 - Thermal wake
 - Adiabatic cooling, IR-cooling and day time solar heating
 - Deviation and possibly bias against other observation methods or from the "truth"
 - Moisture evaporation at high altitudes
 - Radiation effects?
- Main string
 - Used for extending an instrument from the balloon wake.
 - What is the sufficient string lenght with different balloon sizes and payloads?
 - String material moisture absorption properties (minor)

Uncertainty components of multipayload launches, cont.

- Flight train
 - Parachute (size, type), train regulator/unwinder and radar reflector mutual order and distances may effect to the instruments movement and ventilation

• Rig

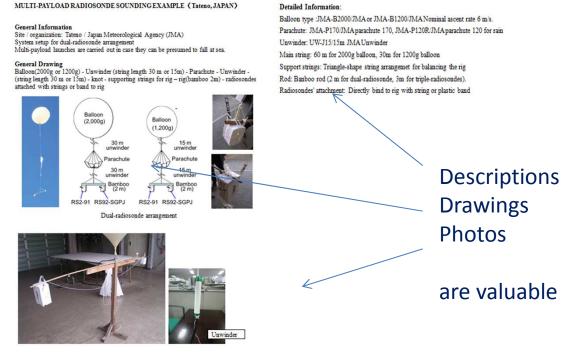
- Material properties , dimensions and color
 - Thermal wake when instruments are hanging
 - Effect to ventilation when instruments are fixed to rig
 - Moisture absorption and collection at low altitudes and evaporation in the stratosphere?
- Instruments assembly to rig / flight train
 - Various effects to instrument ventilation
 - Effects of instruments mutual interference (horizontal distance)
 - etc.

Questionnaire sent to GRUAN stations

General Drawing

- "Big picture" of the whole rigging setup
- What are the components in the setup
- Order and distance between the components
- What type of connections are used between the components (knot, string, tape...)

General Information

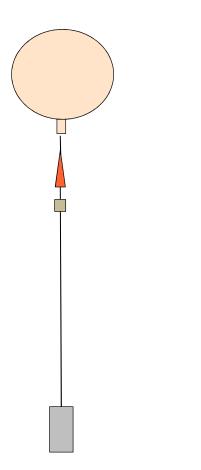

- Site, instruments. Number of instruments
- Any general-level information about the setup, recommendations, limitations
- Viewpoints related to weather conditions

Detailed Description on Components

- Description on the components, if applicable:
 - Balloon, parachute, unwinder, radar reflector, other components
 - Main string length and type. Supporting strings arrangement
 - Rig dimensions and material
 - Radiosondes attachment to rig: freely hanging/taped/else

Received rigging information from the sites

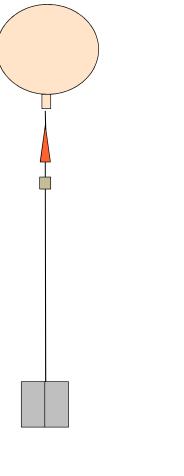
Rigging information / comments received from several sites (Beltsville, ۲ Boulder, Lindenberg, Payerne, Tateno, Sodankylä), from WMO Radiosonde intercomparisons and from some manufacturers. There is use for more


Example from Tateno site

are valuable information

Rigging alternatives review

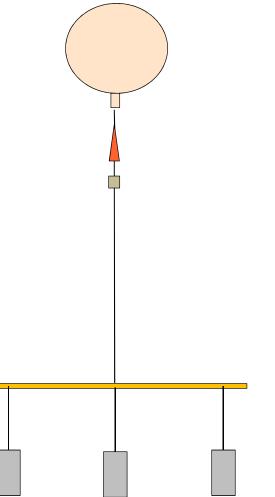
- Following rigging alternatives describe some potential effects to the measurement performace, from theory basis, without analysis of the effect propability or severity
- Some effects are related to bias term, some may cause increased deviation for comparison data
- In many cases the effects can be small in practice


Single sounding, reference

PROPERTIES

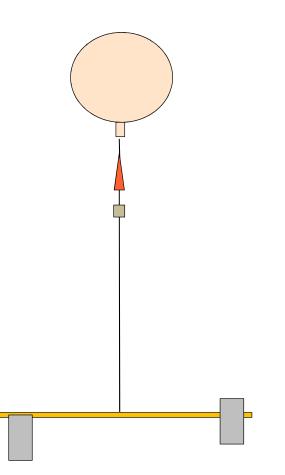
- No elements close to an instrument affecting to the ventilation
- No elements close to an instrument collecting moisture or heat
- Instrument free rotation over the vertical axis
- All horizontal ventilation directions are evenly possible. Pendulum not affected by payload
- Due to small weight small balloon can be used

Instruments connected together, no rig



POSSIBLE EFFECTS, IN THEORY (*

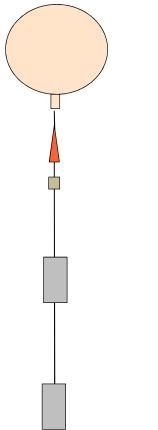
- Larger top cross section and larger volume may reduce sensors ventilation
- Larger top cross section and larger volume may collect moisture or heat
- Combined package may have an effect to the radiation properties
- Slightly reduced rotation over the vertical axis due to increased momentum
- Non-symmetric package shape may have an effect to the horizontal flight direction (pendulum)


Instruments connected to rig, hanging

POSSIBLE EFFECTS, IN THEORY (*

- Slightly reduced rotation over the vertical axis due to short string between an instrument and a rig
- Rig may have an effect to the ventilation
- Rig may heat/cool the air flowing to the instruments
- Rig may moisten the air flowing to the instruments

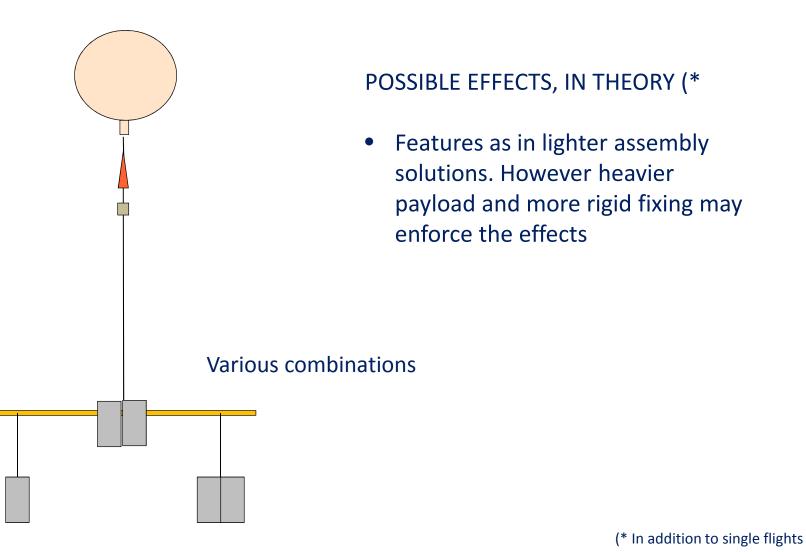
Instruments fixed to a rig



POSSIBLE EFFECTS, IN THEORY (*

- Reduced rotation over the vertical axis due to increased momentum
- May reduce instrument small scale movements and ventilation
- Rig may heat/cool or moisten the air flowing to the instruments, depending on the assembly

(* In addition to single flights


Instruments connected to string vertically

POSSIBLE EFFECTS, IN THEORY (*

- Higher instrument may cause thermal wake and effect to lower instrument measurement
- Higher instrument may reduce ventilation of the lower instrument
- Slightly reduced rotation over the vertical axis
- Some challenge in data synchronization on timely basis

Combined assembly

Next steps

Specified in the GRUAN Implementation Plan 2013-2017

 (D3) A document detailing the operational challenges related to multi-payload soundings submitted either to peer reviewed literature (first choice) or to WG-GRUAN for review as a TD. D3: Drafted August 2013

Actions

- Continue collecting information on used rigging methods. In addition collect data and understanding <u>why</u> different methods are favoured or not. Collect information on <u>specific</u> <u>requirements of instruments</u>
- Review the existing literature
- Evaluate <u>magnitude</u> of measurement <u>uncertainty components for various potential rigging</u> <u>methods</u> (qualitative if not quantitative). This would also require flow and thermal analysis at some extent.
- Identify <u>rigging methods that enable low measurement bias</u> between instruments in comparison
- If needed, clarify the goals of this task and consider getting some more volunteers for this task either within or outside the TT1.

Thank you for your attention!