Linking GRUAN to the Satellite Community

John Dykema Harvard University, School of Engineering and Applied Sciences

Tony Reale

Dave Tobin University of Wisconsin-Madsion, Space Science and Engineering Center

ICM-4 9 March 2012 Tokyo, Japan

- Fundamental satellite calibration will come through satellite-satellite methods: GSICS
- Predominant interests of satellite community in GRUAN-like measurements are:
 - Product (retrieval) validation
 - Radiative transfer improvement
- Multiple high-quality measurements to estimate atmospheric state at satellite overpass
- Site Atmospheric State Best Estimate (SASBE)

AIRS Atmospheric InfraRed Sounder Grating spectrometer 166 kg, 256 W 13.5 km FOV at nadir, contiguous Launched on Aqua in 2002

2x2 12 km FOVs at nadir, non-contiguous Launched on Metop-A in 2006

CrIS

Cross-track Infrared Sounder Michelson interferometer 146 kg, 110 W 3x3 14 km FOVs at nadir, contiguous To be launched on NPP on 25 October 2011

Spectral Coverage and Resolution

Summary of products from AIRS & IASI

gas	Range (cm ⁻¹)	Precision	d.o.f		AIRS	IASI
т	650-800 2375-2395	1K/km	6-10	H2O,O3,N2O emissivity	NASA DAAC	NGDC/CLASS
H ₂ O	1200-1600	15%	4-6		NASA DAAC	NGDC/CLASS

CriMSS Performance Specification

Atmospheric Vertical Temperature Profile (AVTP) Measurement Uncertainty – Layer Average Temperature Error

PARAMETER	THRESHOLD
AVTP Clear, surface to 300 mb	1.6 K / 1-km layer
AVTP Clear, 300 to 30 mb	1.5 K / 3-km layer
AVTP Clear, 30 mb to 1 mb	1.5 K / 5-km layer
AVTP Clear, 1 mb to 0.5 mb	3.5 K / 5-km layer
AVTP Cloudy , surface to 700 mb	2.5 K / 1-km layer
AVTP Cloudy, 700 mb to 300 mb	1.5 K / 1-km layer
AVTP Cloudy, 300 mb to 30 mb	1.5 K / 3-km layer
AVTP Cloudy, 30 mb to 1 mb	1.5 K / 5-km layer
AVTP Cloudy, 1 mb to 0.5 mb	3.5 K/ 5-km layer

Atmospheric Vertical Moisture Profile (AVMP)

PARAMETER	THRESHOLD
AVMP Clear, surface to 600 mb	Greater of 20% or 0.2 g/kg / 2-km layer
AVMP Clear, 600 to 300 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Clear, 300 to 100 mb	Greater of 35% or 0.1 g/kg / 2-km layer
AVMP Cloudy, surface to 600 mb	Greater of 20% of 0.2 g/kg / 2-km layer
AVMP Cloudy, 600 mb to 400 mb	Greater of 40% or 0.1 g/kg / 2-km layer
AVMP Cloudy, 400 mb to 100 mb	Greater of 40% or 0.1 g/kg / 2-km layer

(courtesy Nick Nalli)

National Environmental Satellite, Data, and Information Service

Sounding Strategy in Cloudy Scenes: Co-located Thermal & Microwave

Scanning-High resolution Interferometer Sounder (S-HIS)

- HIS and AERI heritage
- 0.5 cm⁻¹ resolution
- 580-3000 cm⁻¹ coverage with three spectral bands
- 100 mrad FOV (~2 km diameter from 20 km)
- programmable cross track downward and zenith viewing
- 1998 to present on NASA ER-2, Proteus, and NASA WB-57
- In-field calibrated spectra

S-HIS on WB-57 wing pod

Traceability

Perform **periodic end-to-end radiance evaluations** under flight-like conditions with NIST transfer sensors such that satellite validation analyses are traceable to the NIST radiance scale

January 2007, testing at UW/SSEC

2500

IASI Longwave Validation, JAIVEX

IASI Midwave Validation, JAIVEX

IASI Shortwave Validation, JAIVEX

GEO Intercalibration based on AIRS and IASI

Sample AIRS spectrum and Aqua MODIS SRFs

wavenumber

GRUAN Site Atmospheric State Best Estimate

- Radiosondes drift in time and space
- Radiosondes ascent time much greater than satellite measurement length
- Solution: use ancillary measurements to interpolate in space and time
- One approach: Tobin et al., "Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation," JGR 2006
- See also Calbet et al., AMT, 2011

GRUAN Tobin 2006 Approach to SASBE

- Two sondes were launched near overpass time
- Interpolate sonde profiles in time with IRbased atmospheric profiling
- Interpolate sonde profiles in space with geostationary measurements
- Perform weighted average of interpolated profiles to get best estimate of atmospheric column

- How does SASBE compared for standard sonde launch times versus special overpass times?
- What is the quantitative improvement from each ancillary measurement?
- How do uncertainties of ancillary measurements propagate into state estimate?
- Answering these questions supports a demonstration project 2, Tokyo, Japan

SCOPE-CM

- AVHRR based data set of cloud and aerosol properties
- SSM/I: total column water vapour, precipitation, liquid water path
- Surface albedo, clouds and aerosols from geostationary satellites
- Atmospheric Motion Vectors (AMV) and clear sky radiance
- Upper tropospheric humidity