Reanalysis Needs for Reference Data

David Tan + colleagues

Reanalysis Section

European Centre for Medium-range Weather Forecasts

Shinfield Park, RG2 9AX, United Kingdom

- Reference-quality observational data are essential for many aspects of reanalysis
- Useful for validation and/or assimilation, but also via their contribution to improving satellite-based products
- Priority 1 and 2 ECVs all highly relevant
- Look forward to jointly making progress via WG-ARO & GRUAN

Outline

- Current reanalysis activities
- ESA's Climate Change Initiative
- Recap, outlook, ways to work together

Slide 3

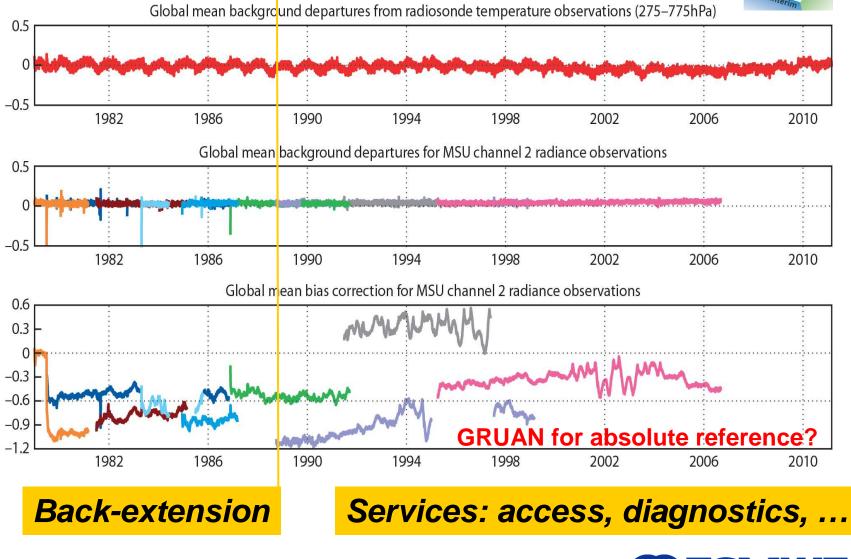
Stating the obvious

- There's no such thing as the perfect dataset applies to observations, models and reanalyses
- Caution should be applied when using any dataset
- Especially true when examining trends in reanalyses
- At any point in time, we can improve on what we've got via better instruments and/or reprocessing

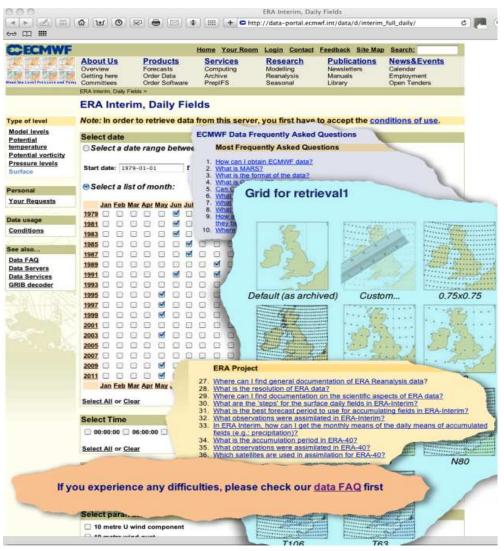
Outline

Current reanalysis activities

- Expanding the ERA-Interim reanalysis


- Ocean reanalyses
- ESA's Climate Change Initiative
- Recap, outlook, ways to work together

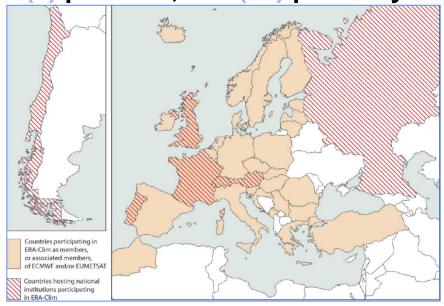
Expanding the ERA-Interim reanalysis

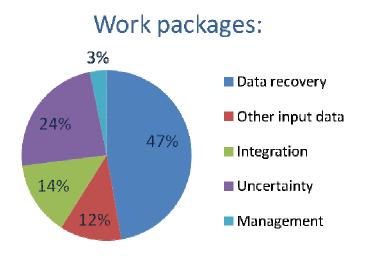


ECMWF

Slide 6

ERA-Interim full-resolution data server


Newsletter 129 Autumn 2011


Slide 7 ECMWF

The ERA-CLIM Project

- ERA-CLIM: European Reanalysis of Global Climate Observations
- 3-year collaborative research project, start date 01/01/2011
- Funded by EU research FP7, Environment theme
- Total cost €4.9M; EC contribution €3.5M
- 8(9) partners, 47.5(59) person-years, 50 deliverables

Slide 8

ERA-CLIM Deliverables

Objectives	Key deliverables								
Development of the	Inventories; database for metadata, web-based digitising tools								
observational record for the early	Digitized, quality-controlled instrumental records for the early 20 th century								
20 th century	Access to observations and metadata via international data centres								
Preparation of reprocessed	Reprocessed satellite data sets for input to reanalysis; early satellite records								
satellite observations, boundary	Ensemble of consistent sea-surface boundary conditions for the 20 th -century								
conditions, and forcing data	Atmospheric forcing data (solar, aerosols, GHG, land surface) for ERA-20C								
Development of an Observation	Database facility for input observations with quality feedback from reanalyses								
Feedback Archive (OFA)	A series of long test reanalyses at various resolutions to prepare for ERA-20C	WP3							
Production of pilot reanalyses and data quality information	All reanalysis products and input observations available via web services								
Assessment and	Homogenized in-situ data and bias correction techniques								
reduction of data	Improved ocean observations for reanalysis	WP4							
uncertainties	Tools for quality assessment of reanalysis products								

ERA-CLIM pilot reanalyses

		What	Period	Resolution	Ens	When	Vol
	ERA-Int	Interim reanalysis	1989-NRT	T255L60	1	ongoing	33 Tb
	ERA-P0	AMIP ensemble	1900-2011	T159L91	10	Jun 2011 (9M)	
	ERA-P1	EDA using sfc obs only	1900-2011	T159L91	10	Sep 2011 (15M)	655 Tb
	ERA-S1	Land surface using ERA-P1	1900-2011	T799	1	Sep 2012 (9M)	77 Tb
	ERA-P2	Reanalysis using all obs	2 early decades	T511L91	1	Sep 2012 (9M)	180 Tb
	ERA-E2	As ERA-P2 but with SST/sea-ice perturbations	2 early decades	T159L91	10	Jan 2013 (9M)	180 Tb
7	ERA-P3	To replace ERA-Interim	1979-NRT	T511L91	1	Jan 2012 (24M+)	234 Tb
	ERA-20C	20 th -century reanalysis	1900-NRT	T511L91	1	2014 (36M+)	1062 Tb

Slide 10

GRUAN ICM4 JMA Tokyo March 2012

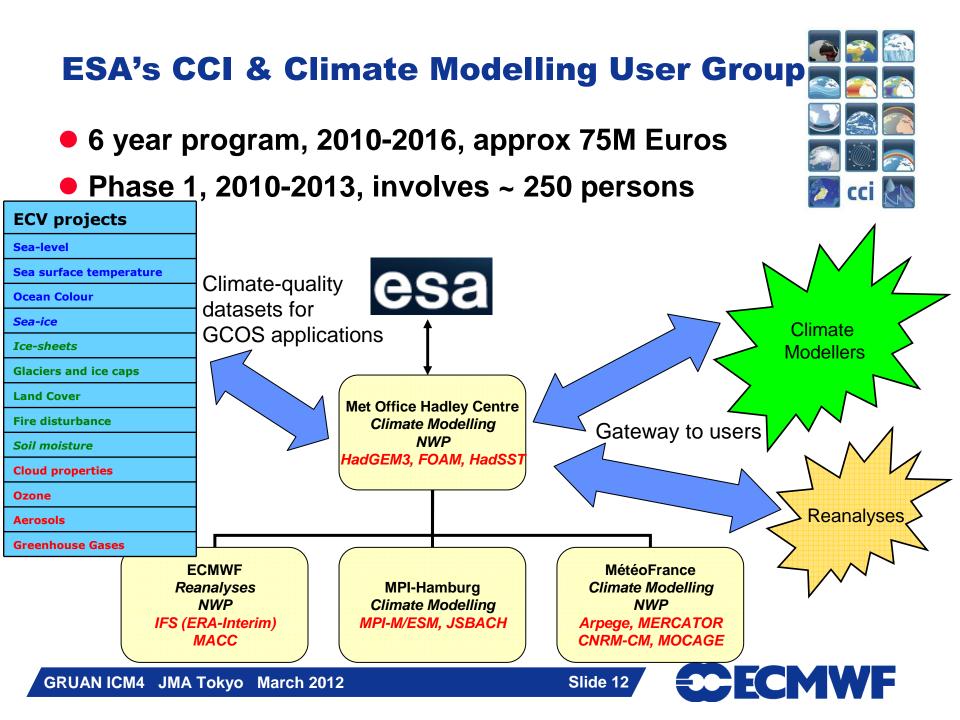
ERA-CLIM

Outline

-

- Current reanalysis activities
 - **Expanding the ERA-Interim reanalysis**

- Developing the ERA-CLIM reanalyses
- MACC-II for atmospheric composition operational + reanalysis
- Ocean reanalyses
- ESA's Climate Change Initiative


🤌 cci 🕅

Slide 11

Recap, outlook, ways to work together

ECMWF within Climate Modelling User Group

- **Facilitate reanalysis usage** (ancillary input, comparison)
- **Our experience is contributing to product development:**
 - **Requirements, definitions, uncertainty characterization,** ۲ consistency/homogeneity, validation – role for GRUAN!

Building database system to evaluate L3 products

😻 tseries: ERA MONITORING HUB - M				
File Edit Vew History Bookmarks T	pols Help			
🍩 💩 - 🕝 🛞 🏠 🚳 http://	ibstone.ecmwf.nt:8080/man2?dbneme_	myob&dbuser_eras&obhost_lxs	b&dbport=5426&dbschema=sch_timtw.&c	:bengire_ei 🔆 🚽 🚼
ERA Observations S	tatistics Monitoring	Browser		
		DIGWSCI		
Specify statistics catabase.				
Name: mydb	User: eras	Host Kab	Port: 5126	Schoma: Sch_timtw.
Select from the following filters. Note: to a		on't pick more than 2 independe	nt variables.	
Product stream	Geophysical parameter	Region	Date Quanti	
HadlSST2_103 ≑	SST =	205 20N 😂	[Variable:YearMonth ≑] Mear	n datum 🛛 🗢
UPDATE DATABASE CATALOGUE	GET ME THE STATISTICS!		CLEAN-UP REGISTERLY	
SST pgavgdatum				
				301.5
				0 Ocean ERK 40
		1		Occordin ERA Int
				- 301.0 - 300 5
		- 11 - 11in 1 - 1 - 11		
		10. 00000000000000000000000000000000000	Here i	- 300.0
ANNI AN AND AND AND				505.5
		LINEVALE E IN MULTURE DATA DE L		- 299.0
	LIV MATURE MALINIAN COLLECTIVE AND AND			298.5
HERE AND AND AND AND A REPAYED	TI KI KA KING KINA KI TI MI MANU	No CONTRACTOR OF A CONTRACTOR	A. MANILLE LEE MALIANCE.	19009209405609880000
TATA ANY ANALYNY YN TRAN TATA AN	Malli duli 1 1. da			- 299.5
I I IIIIIII IIIIIIIII				
	-			- 293.0
1				
1900 1510 1920	1930 1940 19	50 1960 1970	1980 1990	2000 2010
				4747
	March 2012		Slide 13	
N ICM4 JMA Tokyo			Shue 13	

Outline

-

- Current reanalysis activities
 - **Expanding the ERA-Interim reanalysis**

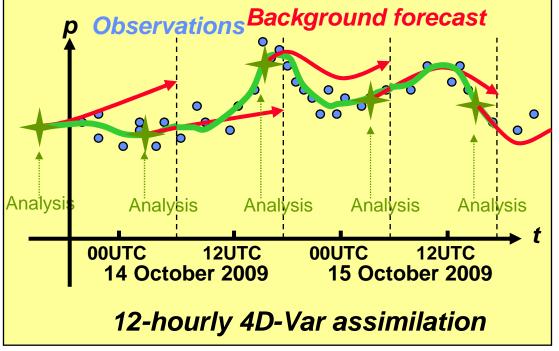
- Developing the ERA-CLIM reanalyses
- MACC-II for atmospheric composition operational + reanalysis
- Ocean reanalyses
- ESA's Climate Change Initiative
- Recap, outlook, ways to work together

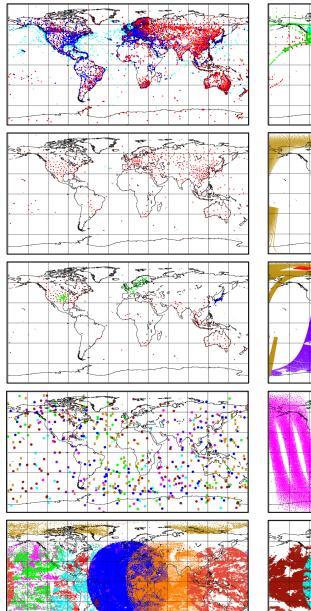
Recap, outlook, ways to work together

- Reference-quality observational data are essential for many aspects of reanalysis
- Useful for validation and/or assimilation, but also via their contribution to improving satellite-based products
- Priority 1 and 2 ECVs all highly relevant
- Look forward to jointly making progress via WG-ARO & GRUAN
- Strengthen awareness and links between communities

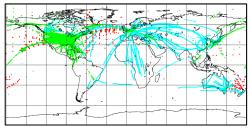
CMWF

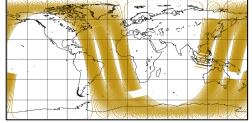
Backup slides

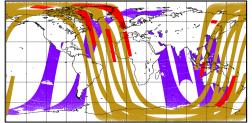


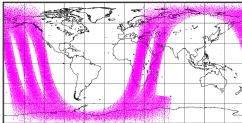

Brief Primer on Data Assimilation

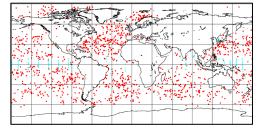
Combine information from

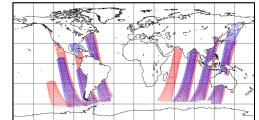

- Observations
- Background forecast (propagates the information extracted from prior observations)
- Error statistical models
- Relationships to build-in dynamical and physical consistency between various meteorological parameters
- To produce the "most probable" estimate of the atmospheric state
 - And some estimate of uncertainty

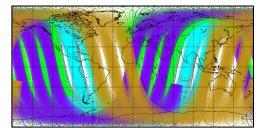

Data assimilation systems incorporate observations in an optimal way with a model to improve knowledge of the atmospheric state

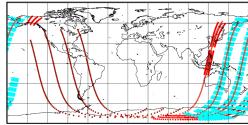




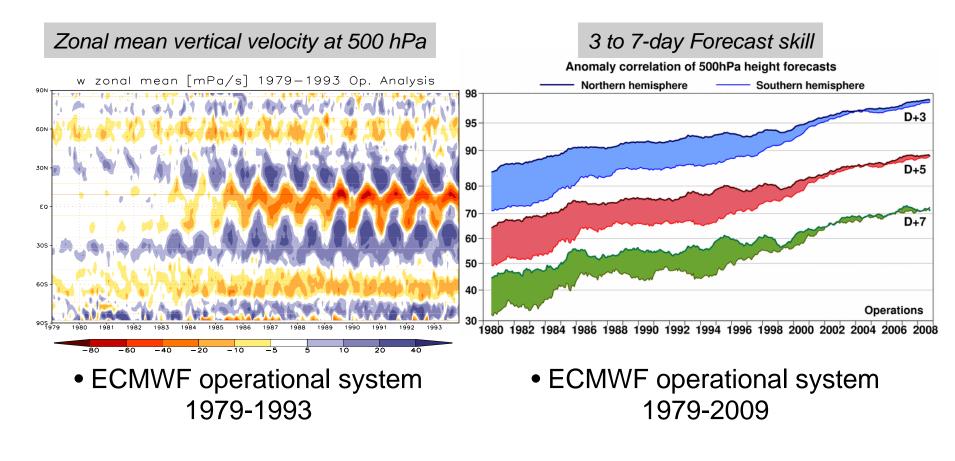






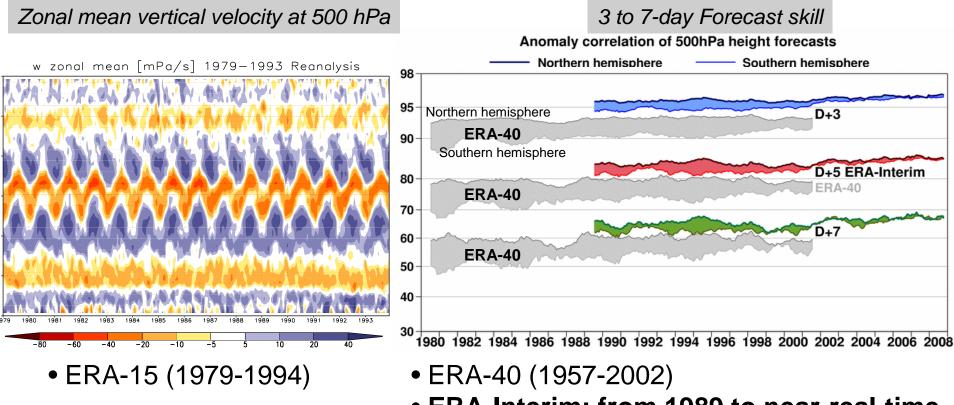


Slide 18



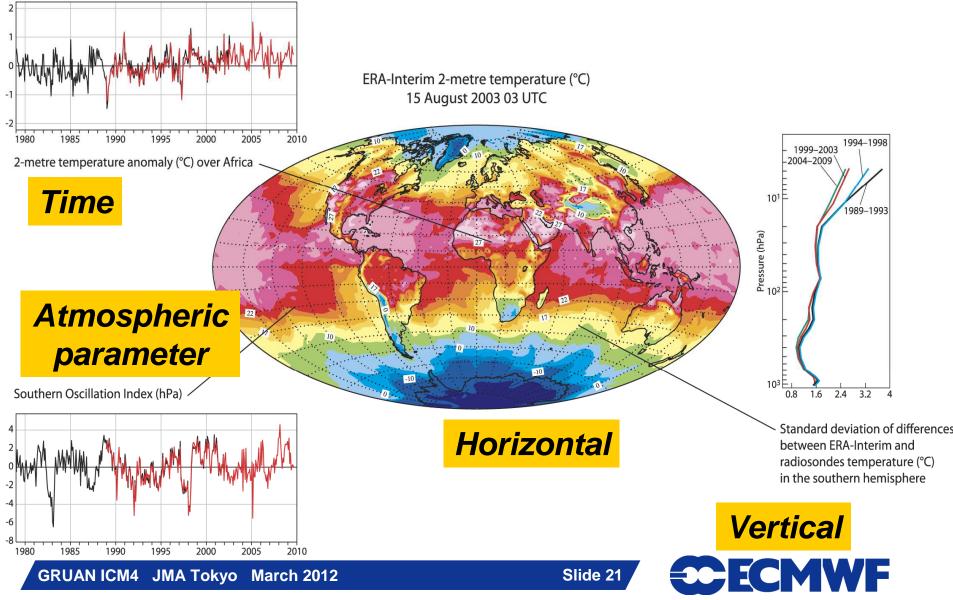
Observation distributions 00UTC 6 February 2009 ±3h

Why not use operational analysis products?



Quality of operational analysis products changes in time

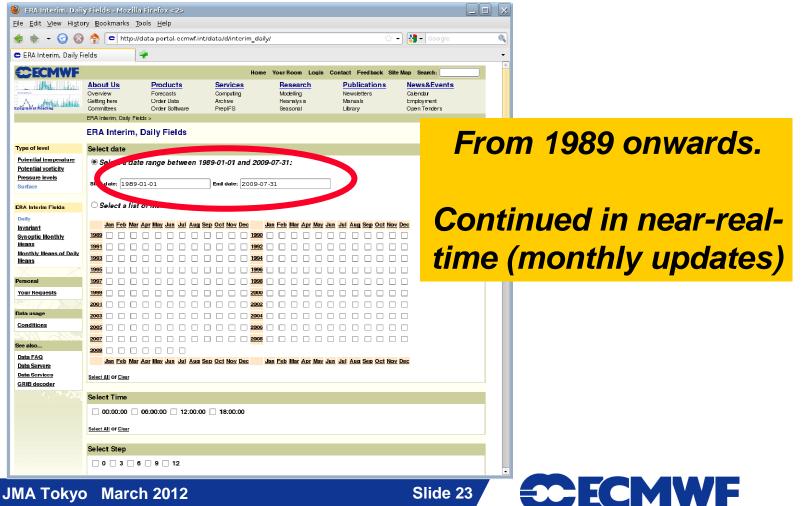
ECMWF Reanalyses


• ERA-Interim: from 1989 to near-real-time

Reanalysis quality more "uniform" in time* * but still subject to changes in the observing system

GRUAN ICM4 JMA Tokyo March 2012

Reanalyses offer consistent multi-dimensional views of the atmosphere


ERA-Interim products

- 20+-year period January 1989- July 2009 completed
- Extending forward in time (5 days behind real-time)
- Monthly updates of the product archive
- Resolution: T255L60, 6-hourly (3-hourly for surface)
- Analysis + forecast products, and monthly averages
- Products from coupled ocean-wave and land-surface models
- Member state users: full access via MARS
- All users: web access via ECMWF Data Server

ERA-Interim Public Data Server

Information: <u>http://www.ecmwf.int/research/era</u> Products: http://data-portal.ecmwf.int/data/d/interim_daily/

Surface (2D) parameters 3-hourly resolution, and monthly averages

≥ ERA Interim, Daily Fields - Mozilla Firefox <2>	
<u>Fi</u> le Edit <u>V</u> iew Hi <u>s</u> tory <u>Bookmarks</u> <u>T</u> ools <u>H</u> elp	
🐗 🐞 🝷 🕝 🛞 🛧 💼 http://data-porta.ecmwf.int/data/d/interim_daly/	र्त्त 🖣 🚼 🚽 Google 🔍 🔍
• C A nterim, Daily Felds	
Select parameters	<u> </u>
☐ 10 metre U wind component	10 metre V wind component
□ 10 metre wind gust	2 metre dewpoint temperature
2 metre temperature	Albedo
Boundary layer dissipation	Boundary layer height
Charnock	Clear sky surface photosynthetically active radiation
🗌 Convective available potential energy	Convective precipitation
Convective snowfall	Downward UV radiation at the surface
East-West surface stress	Evaporation
E Forecast albedo	Forecast logarithm of surface roughness for heat
Forecasi surface roughness	Gravity wave dissipation
High cloud cover	Ice surface temperature layer 1
Ice surface temperature layer 2	Ice surface temperature layer 3
loe surface temperature layer 4	Instantaneous X surtace stress
Instantaneous Y surface stress	Instantaneous moisture flux
Instantaneous surface heat flux	Large-scale precipitation fraction
Large-scale snowfall	Latitudinal component of gravity wave stress
Logarithm of surface roughness length for heat	Low cloud cover
Maximum temperature at 2 metres since previous post-processin	
Mean wave direction	Nean wave period
Medium cloud cover	Meridional component of gravity wave stress
☐ Minimum temperature at 2 metres since previous post-processing	-
Photosynthetically active radiation at the surface	Runoff
Sea surface temperature	
Significant wave height	Skin reservoir content
Skin remperature	Snow depth
Snow evaporation	Snowfall
	Soll temperature level 1
Soli temperature level 2	Soil temperature level 3
Soli temperature level 4	Stratiform precipitation (Large-scale precipitation)
	Surface latent heat flux
Surface net solar radiation, clear sky	Surface net thermal radiation, clear sky
Surface pressure	Surface roughness
Surface sensible heat flux	Surface solar radiation
Surface solar radiation downwards	Surface thermal radiation

GRUAN ICM4 JMA Tokyo March 2012

Upper-air (3D) parameters 6-hourly resolution, and monthly averages

🕹 ERA Interim, Daily Fields - Mozilla Firefox <2>														ונ	X																			
File Edit View Hstory Bookmarks Tools Help 🔹 🔹 🔂 🗸 🐨 http://data-portal.ecmwf.nt/data/c/interin_daily/levtype=pl/ 🔅 🗸 🕄 🗸 Google 🔍																																		
👾 🗼 👻 🕜 🛞 🏠 🖻 http://data-portal.ecmwf.nt/data/c/interim_daily/levtype=pl/												ĩ	_																					
🗢 ERA Interim, Daily Fields 🚽																-																		
Select para	met	ers																																-
	1000 975 950 925 900 875 850 825 800 775 750 700 650 600 550 500 450 400 350 300 250 225 200 175 150 125 1													<u>100</u>	<u>70</u>	<u>50</u>	<u>30</u>	20 1	<u>D</u> Z	<u>5</u>	<u>3</u>	2	1											
Cloud cover																																		
<u>Cloud ice</u> water <u>content</u>																																		
<u>Cloud liquid</u> <u>water</u> <u>content</u>																																		
Divergence																																		
Geopotential																																		
Ozone mass mixing ratio																																		
Potential vorticity																																		
<u>Relative</u> humidity																																		
Specific humidity																																		
<u>Temperature</u>																																		
U velocity																																		
V velocity																																		
<u>Vertical</u> <u>velocity</u>																																		
<u>Vorticity</u> (<u>relative)</u>																																		
<u>Select All</u> or <u>Cle</u> Retrieve G	<u>ar</u>				100 87		0 <u>825</u> Plot o		_	<u>750</u>	<u>700 6</u>	<u>50</u> 6	<u>00</u> <u>55</u>	<u>0 50</u>	<u>0</u> <u>450</u>	<u>400</u>	<u>350</u>	<u>300</u> :	<u>250</u> 2	<u>225</u> 2	<u>00 17</u>	<u>5 150</u>	<u>125</u>	<u>100</u>	<u>70</u>	<u>50</u>	<u>30</u> :	<u>20 1</u>	<u>0 7</u>	5	<u>3</u>	2	1	Ŧ

GRUAN ICM4 JMA Tokyo March 2012

ECMWF

Reanalyses are worth repeating

- All ingredients evolve thanks to research and development in the science community
 - Models are getting better
 - Dynamics, physics, resolution
 - Data assimilation methods are getting better
 - Optimal interpolation \rightarrow 3DVAR \rightarrow 4DVAR ...
 - Observations are getting better
 - Past observations are re-processed with new techniques, datasets can be homogeneized, ...

Slide 26

 Each new generation of reanalysis integrates all these efforts for the benefit of a wide user community

Potential role of reanalysis for integration and validation of ECV products

- Bring in products under one unified framework, to compare
 - with full reanalysis system
 - with other observations
- Identify / estimate uncertainties
- Assess impact via withholding experiments or sensitivity analyses

- Assess homogeneity and time consistency
- Identify discrepancies between physically-related parameters

Conclusions

- Most (if not all) of the ECV projects will require some information on the atmospheric parameters at the time and location of the satellite observation
- ECMWF already has a production system in place (based on the state of science as of 2006) to generate atmospheric auxiliary data in a time-continuous way
 - ERA-Interim reanalysis (1989-July 2009), continued in near-real-time
- These products are freely available on the web: <u>http://www.ecmwf.int/research/era</u>
- Potential for integrating future ECV products in ECMWF reanalyses for evaluation and assessment

Some applications of reanalysis

• Gridded proxy for "Observations", for verification and diagnosis

- Forecast model development, calibration of seasonal forecasting systems, climate model development; use of data assimilation increments for identifying model errors

Input data for model applications

- for smaller-scales (global→regional; regional→local), ocean circulation, chemical transport, nuclear dispersion, crop yield, health warnings, ...

Study of short-term atmospheric processes and influences

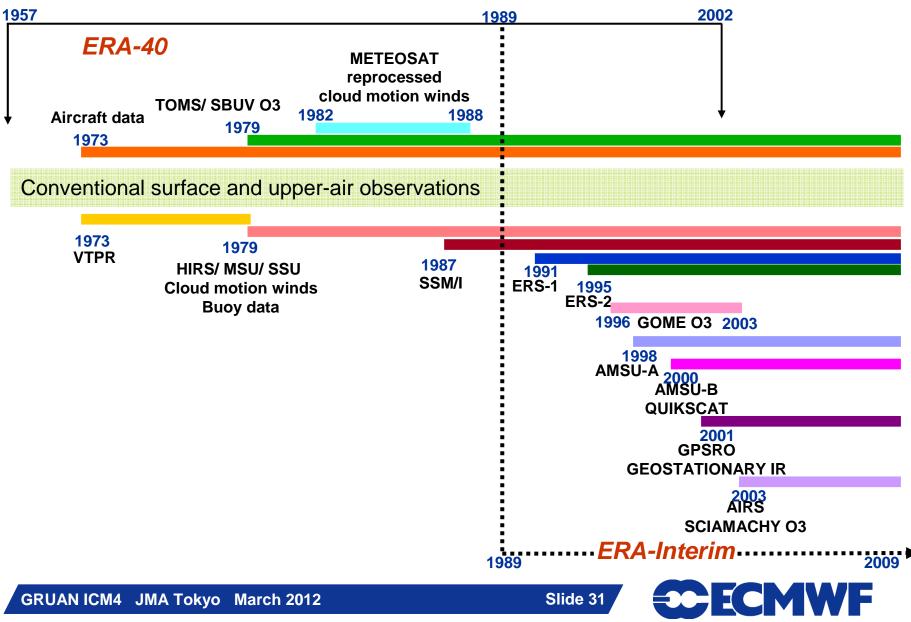
- process of drying of air entering stratosphere, bird migration, ...
- Providing climatologies
 - ocean waves, resources for wind and solar power generation, ...
- Assessment of the observing system
 - providing feedback on observational quality, bias corrections and a basis for homogenization studies; contributing to data reprocessing activities
- Study of longer-term climate variability and trends
 - used with caution in conjunction with observational studies

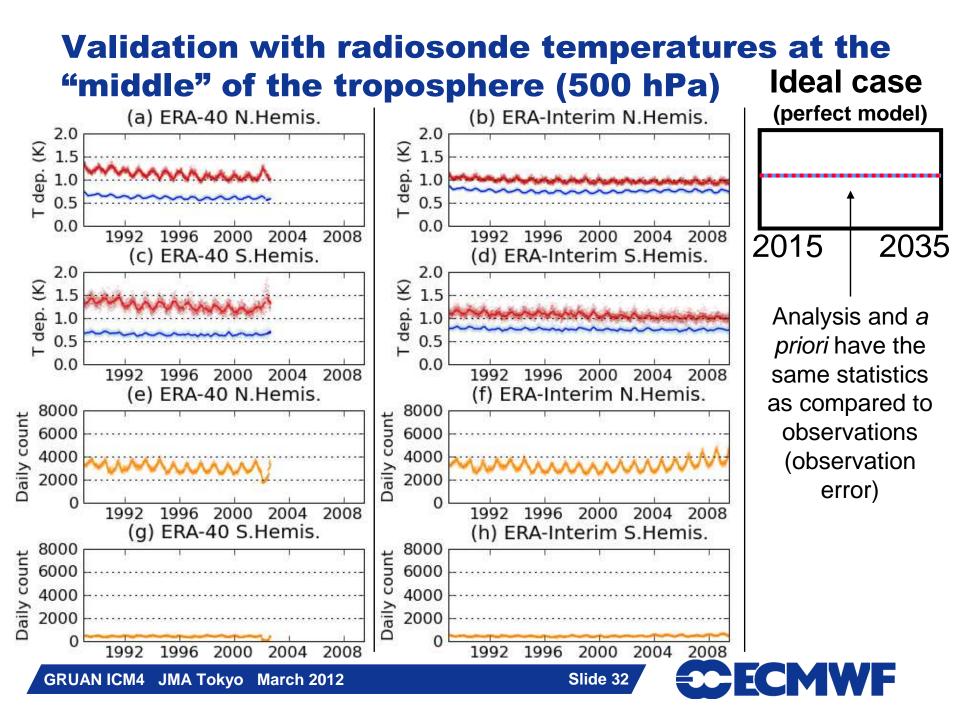
ECMWF

When will ERA-Interim be replaced?

Challenges for a future reanalysis project:

- An extended reanalysis project such as ERA-40 takes 7-10 years to complete
 - Complex technical and scientific adventure (computing, monitoring, archiving)
 - Integration of expertise of various communities
- Need to acquire 'new' observations
 - Not fully dealt with in ERA-Interim few additional datasets
 - Several `new' datasets now available after digitization and clean-up – more datasets coming up


Slide 30


FCMWF

- Scientific challenges:
 - Better handle the model error (bias)
 - Coupling with ocean
- Funding

-

Observing systems used in ERA-40 and ERA-Interim

