

Howard University – Beltsville Site Report

4th GRUAN Implementation-Coordination Meeting Tokyo, Japan 3-10 March 2012

Presented by Belay Demoz Howard University, Washington D.C.

Contributions: Howard University: D. Venable, E. Joseph NASA/GSFC: D. Whiteman, K. Vermeesch NOAA/NWS : J. Facundo; M. Hicks NOAA/STAR: T. Reale;

Acknowledgment:

NASA, NOAA, NOAA/NCDC; NOAA Center for Atmospheric Studies

Outline

- Summary of GRUAN activities
- GRUAN-related facility updates
 - ALVICE: Mobile Lidar Laboratory
 - Ground Site activities update

Analysis/Techniques

- Data/Trends contribution in brief
- Raman lidar Calibration/Diagnostics

Collaborations

- NWS Collaboration
- Satellite related work

Summary of activities

We have funding from NASA/NOAA to prepare for implementation - Covered initial instrumentation; Site preparation and training

Beltsville Sounding Data, 2011 Statistics.

- RS92 soundings: 81- RS92 → >1/week
- ozone soundings: 40 EN-SCI Z1 model ECC Ozone- GPS

Beltsville GRUAN data submission

- RSLAUNCH initial setup is done will soon complete data submissions

Sonde Capability:

- CFH: Periodic launches continue_WAVES-2011
- NOAA funding will be used exclusively CFH.

NWS-Beltsville Collaboration

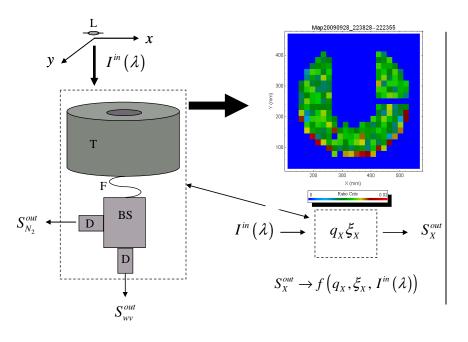
- -LMS/RS92-CFH work continues. Summer 2012 IOP.
- -GRUAN contribution is discussed

Other: Involved in GATANDOR, Trend analysis, others tasks, WCRP etc.

GRUAN-use Facility Update/IOP

HOWARD

- Beltsville: Ground site
 - Multi-Sonde capability:
 - Acquired ground stations from the following vendors InterMet, RS92, CFH, Modem, LMS, and GRAW
 - MPL-like 24/7 lidar + Ceilometer
 - Reference HURL Raman calibration work continued
 - MWR profilers (operating 2 similar design for comparison.
 - Data submitted to MWRnet


<u> 10Ps:</u>

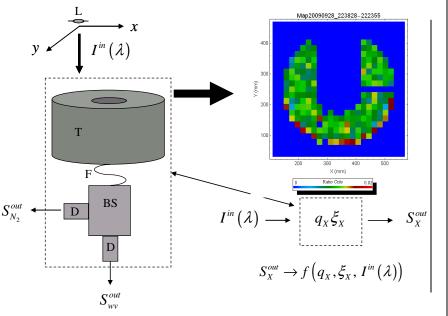
-WAVES_2011 (March - April, 2011) -DISCOVER-AQ

- Relate column observations to surface conditions
- Improved understanding of diurnal variability as it influences the interpretation of satellite observations
- Improved interpretation of satellite observations in regions of steep gradients

Lamp Mapping Technique - Use of a Scanning Standard Lamp Technique for Direct Determination of Water Vapor Mixing Ratio Calibration Factor for HURL

•The water vapor mixing ratio calibrationRD factor C_R depends on the optical TY efficiency (κ), the differential scattering cross sections $(d\sigma/d\Omega)$ and the band pass filter shape (ϵ)

•One determines an overall efficiency by comparing the Mapping Experiment throughput of the N_2 channel to the throughput of the wv channel.


C _R Mapping Exp	C _R RS92:Lidar
187.8 ± 13.7 g/kg	192.9 ± 8.7 g/kg

Summary

- Short term repeatability w/ and w/o repositioning of stage better than ~0.2%
- Relative error when averaging over full scan is $\sim 1 1.5\%$
- Long-term relative error in mean of scanned values ~1 1.5 %
- Long-term relative error in extreme values for individual cells $\sim 2\%$
- Largest error due to 10% uncertainty in cross sections (Penny & Lapp; Avila)
- Ignoring cross section errors, one can obtain 3% relative uncertainty in C_{R} with careful optical filter characterization: (Δ FWHM < 0.01 nm, $\Delta\lambda_o$ < 0.02 nm, & **Baseline Offset < 0.5%**

1st principle calibration/diagnostics for Lidar Systems – Update.

Ignoring cross section errors, one can obtain 3% relative uncertainty in *CR* with careful optical filter characterization.

Student work.

Current Efforts

- Transfer to NASA GSFC ALVICE Raman Lidar
- Determination of Water Vapor Mixing Ratio Calibration Factor
- Determination of System Gluing Coefficients for Licel Transient Recorders
- Determination of the Raman System Overlap function for HURL
- Investigation of Temperature calibration constant for a Raman temperature measurements

Reference: A Lamp Mapping Technique for Independent Determination of the Water Vapor Mixing Ratio Calibration Factor for a Raman Lidar System, D. D. Venable, D. N. Whiteman, M. N. Calhoun, A. O. Dirisu, R. M. Connell, E. Landulfo, *Applied Optics*, 50, pp. 4622-4632 (2011) GRUAN ICM4, 3-10 March 2012

Update: GRUAN-use Facility and IOP

• ALVICE: Mobile "GRUAN Site" Laboratory

- Raman water vapor, aerosol, cloud lidar
- RS92, iMet and CFH launch capability
- GPS total column water (SuomiNet)
- THRef Surface reference measurements with sonde ventilation capability
- calibration lamp technique enabled.

Upcoming Campaigns:

- WAVES_2011 University of Western Ontario (May June, 2012)
 Intercomparisons with Purple Crow Raman Lidar (Canada)
- First principles calibration effort for ALVICE Lidar
 - Student Monique Walker transferred from HURL to ALVICE
 - Can test alignment, overlap, etc.

Updates on analysis

- •Water Vapor Trend Detection Analysis in the UT
 - High natural variability in UT water vapor implies Trend detection in UT relatively insensitive to random errors in measurements
 - High random error can hide small systematic errors so procedures adopted should attempt to randomized known sources of systematic errors, if possible. Tom Gardiner presentation
 - To decrease time to detect trend, much more efficient to increase the <u>frequency</u> of measurement than the <u>accuracy</u> of measurement.
 - Quality profile extending in to UT every <u>3-4 days</u> is a good compromise between efficiency of detection and level of effort.
- Reference: Whiteman, D. N., K. C. Vermeesch, L. D. Oman, and E. C. Weatherhead (2011), The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor, J. Geophys. Res., 116, D21118, doi:10.1029/2011JD016610.

Updates on analysis

- MOHAVE 2009 Analysis update
 - Wet bias developed in Raman lidar due to deposition of *biological material* on receiver during campaign.
 - Correction technique developed and applied consistent with the GUM
 - "It is assumed that ... measurement has been corrected for all recognized significant systematic effects and that every effort has been made to identify such effects."

- Recommendations for GRUAN Raman Lidars:

- Not sufficient to ensure bias free results. On-going data quality protocols are needed (*e.g. Window should be washed regularly, coverings, etc)*.
- Data analysis should include checks for the existence of biases.
- Corrections should be applied when the biases are significant, with uncertainty of the correction accounted for, consistent with recommendations of the GUM

References: Whiteman et al., "Correction technique for raman water vapor lidar signal dependent bias and suitability for water vapor trend monitoring in the upper troposphere." Under discussion at AMTD.

NWS Collaboration

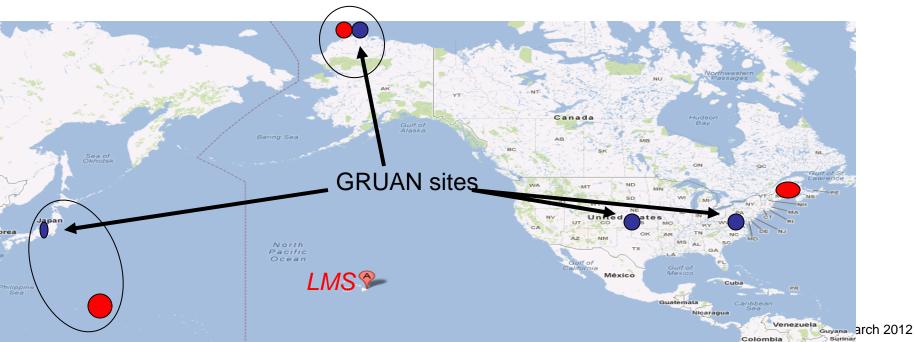
NWS - Howard collaborations: 2012

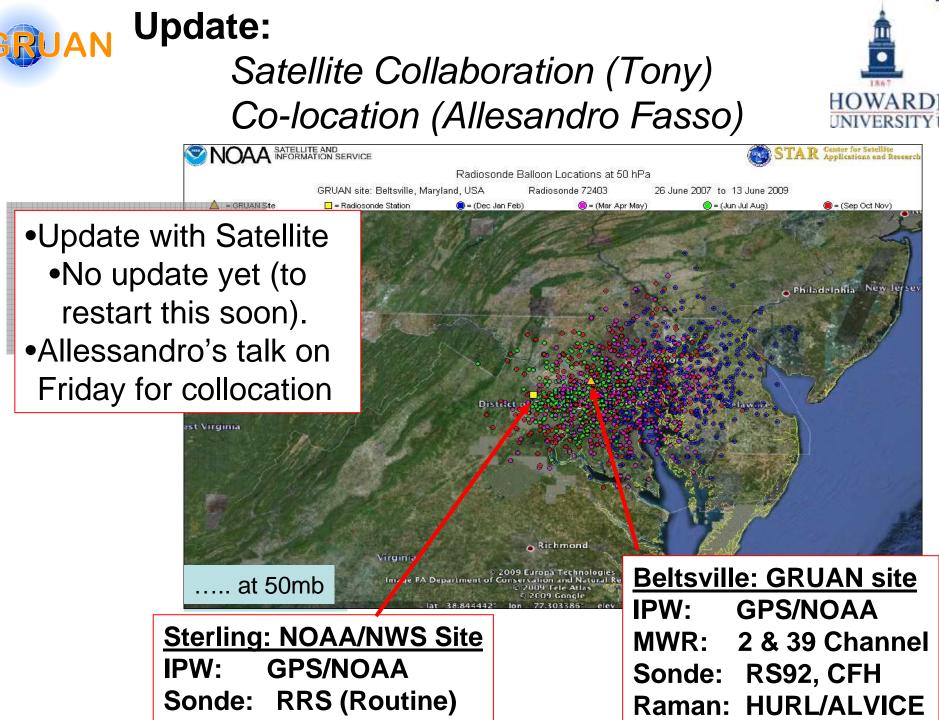
- Continue work and refine the "consensus reference work
 - Technique dev/enhancement and expansion
 - This may interest the GRUAN/GATNDOR group.

• LMS-ground station operations

- Work will include SW analysis and Multi-thermistor issues (SW analysis tools, solar correction on SW/LMS, etc)
- radiation flux on a sonde exploring the idea
- Multi-package flights (planning for RS92, LMS, CFH)

• Other

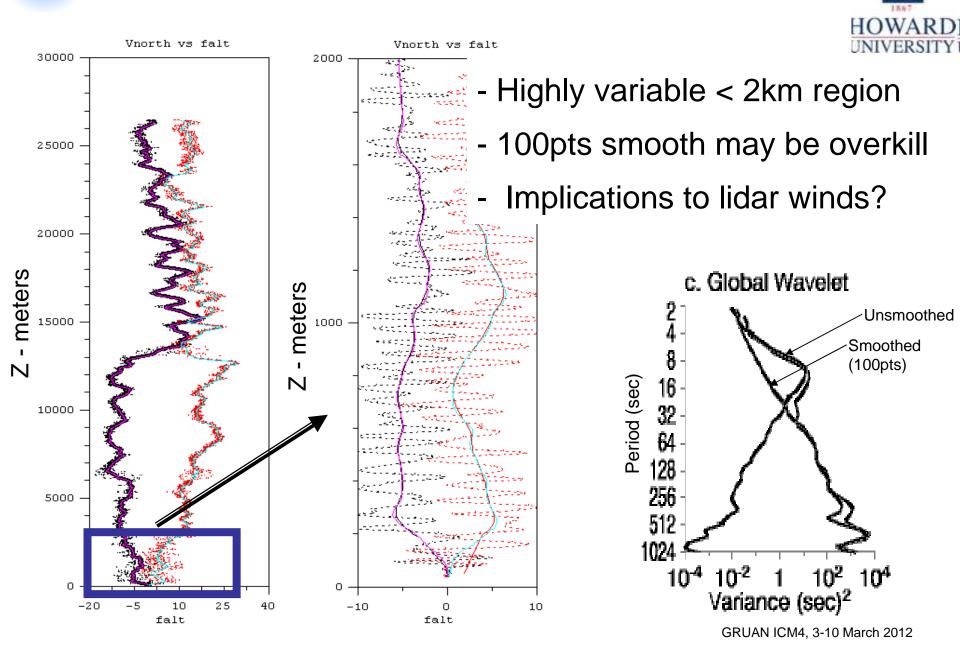

- Mini-DIAL Test NCAR/Montana
 - 24/7 DIAL water vapor and aerosol for low \$ (Potential game changer)
- Thermodynamic Profiling Technology report (NAS/NSF/NOAA) report completed with several recommendations pertinent for GRUAN.


Possible GRUAN related -NWS-Howard Collaboration

Possible NWS-Howard Collaborations:2012

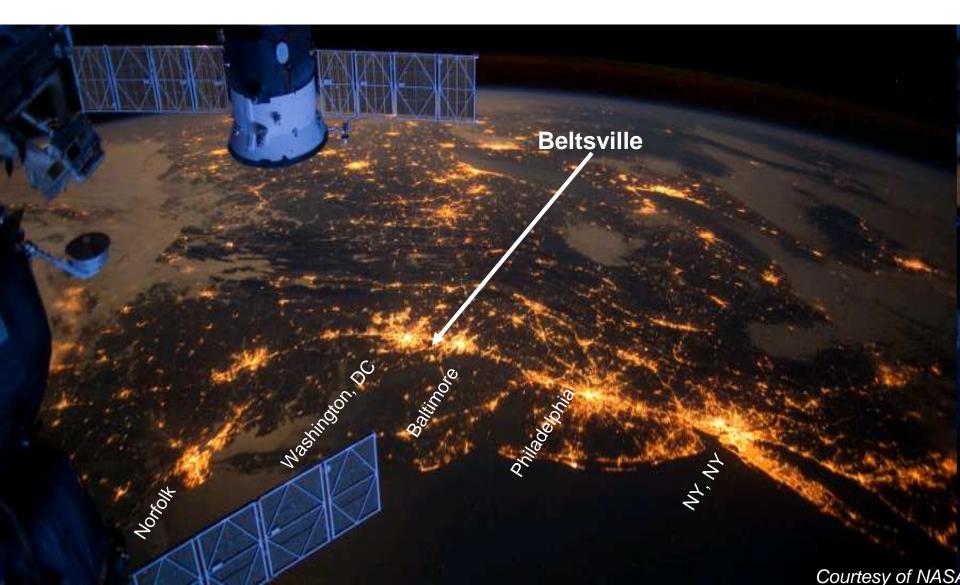
- NWS and RS92: sites (6) will be launching RS92 in NWS.
 - Caribou, Main; Barrow, Alaska; Guam, Sterling, VA
 - Data continuity study using the 2005 RadCor table.
 - Uses NWS ground system and not DigiCora.
 - Hilo, will be LMS and is in continuity study.
 - GRUAN NWS collaborations

Collaboration with Satellite


(See Tony Reale's discussion)

<u>Plan</u>

- Quantify characteristic baseline differences between sondes (Sterling vs Beltsville) and among selected ancillary measurements at Beltsville and root causes.
- Compare temperature (T) and water vapor mixing ratio (MR) from both sites (sondes) and MWR and Lidar profiles from Beltsville.
- Identify sub-samples of NPROVS collocations of Sterling sonde and respective satellites (IASI (1030), N19 (1330), N18 (0730), AIRS (1330)?, COSMIC?) and compare with matching Beltsville data.
- Characteristic sonde differences converted to MW radiance and respectively compared to respective satellite MW observations.
- "Quantify" Sterling-Beltsville variability and transfer to other sites.


GRUAN UPDATE: Wind comparisons continues

END – Thank you.

