Management of Changes in GRUAN: Lessons learn from Lindenberg & Tateno radiosonde data

Junhong (June) Wang
NCAR Earth Observing Laboratory

Collaborators: Aiguo Dai (NCAR/CGD), Franz Immler (GRUAN Lead Center), Hakaru Mizuno (JMA), Tom Peterson (NOAA/NCDC), Dian Seidel (NOAA), Peter Thorne (NOAA/NCDC), Holger Voemel (GRUAN Lead Center), Liangying Zhang (NCAR/EOL)

Outline

- 'Inevitable & desirable"
- Changes: instrumentation, operating procedures, data processing algorithms, operators.

- . What is the problem?
- 2. Document and identify changes
- 3. Quantify and adjust changes
- Recommendations on GRUAN practices

What is the problem?

Humidity Profile Lindenberg / corrected:

from Wolfgang Kusch

What is the problem?

Metadata for change point identification

Solar Zenith Angle for CPI

Independent data for CPI

Consistency test (Immler et al. 2010)

$ m_1 - m_2 < k\sqrt{u_1^2 + u_2^2}$	TRUE	FALSE	significance level
k=1	consistent	suspicious	32%
k=2	in agreement	significantly different	4.5%
k=3	-	inconsistent	0.27%

- m₁ & u₁ are corrected RS92 data (GRUAN corrections)
- m_2 & u_2 are RS90FN data (corrected for T, but uncorrected for RH, u_2 = 2% for RH)

Temperature difference (Routine-FN) at 500 hPa

RH difference (RS92_corr-FN) at 500 hPa

Quantify and adjust changes

- 1. Independent, redundant measurements: *routine vs RS90FN in Lindenberg*
- 2. Corrections of known errors/biases: *GRUAN RS92* corrections
- 3. Overlap dual-sonde (old vs new) data: Tateno case
- 4. Statistical methods: Dai et al. (2011)

Independent reference: RS90FN

GRUAN RS92 corrections

Lindenberg Routine/RS90FN 500hPa

Q: How many dual sonde flights are needed to accurately assess the bias between old and new sondes?

Q: What is the variability in the dual sonde data that would be used in determining the bias between any two sondes?

NCAR

Overlap dual sonde data

Flight configuration of dual sounding

Meisei RS2-91

Vaisala RS92-SGPJ

Temperature trend for 12 UTC (21 LST) considering historical changes of radiosonde

Uesato et al., 2008: J. Aerological Observatory, **68**, 15-22

Recommendations on managing changes: Radiosonde

- 1. Independent, redundant measurements:
- Apply same procedures (GC for RS90FN)
- Implement changes in different times
- Minimize differences caused by factors other than measurement errors, such as not sampling the same air.
- 2. Corrections of known errors/biases:
- Consider one type of changes, so need detailed meta-data
- Need extensive validation/evaluation
- Retain raw data for future improvements
- 4. Statistical methods:
- Maintain detailed meta-data on changes
- Make last or one segment as "reference"

Recommendations on managing changes: Radiosonde (cont.)

- 3. Overlap dual-sonde (old vs new) data:
- New sonde has been tested and evaluated both in lab and in the field (WMO intercomparison) and deemed reliable enough
- On the same balloon or in a sequence as closely in space and time as possible
- Include additional measurements (3rd sonde or R.S.) coincident with the ascents
- Cover day/night and the entire annual cycle
- 240 flights (~twice weekly) spread out over all four seasons
- Quantitative analysis of the dual-sonde data in near real-time
- Collaborations with instrument makers to solve discovered problems and improve the system

Where to go from here?

- 1. Implement GRUAN RS92 data corrections to Lindenberg and Tateno,
- 2. Homogenize the long-term data and study the impacts on long-term trends,
- 3. Other refinements,
- 4. Prepare a journal paper.

A CLIMATE CONTINUITY STRATEGY FOR THE RADIOSONDE REPLACEMENT SYSTEM TRANSITION

Thomas C. Peterson * and Imke Durre

- Only for temperature and only over contiguous U.S.
- 200 flights spread out over all four seasons required to achieve <0.05C discontinuity

Deutscher Wetterdienst

Meteorological Observatory Lindenberg Richard Aßmann Observatory

FN-Method

Leiterer, U. at al.; 2004: A Correction Method for RS80-A Humicap Profiles and their Validation by Lidar Backscattering Profiles in Tropical Cirrus Clouds. JAOT, Vol. 22, No. 1, 18-29.

Fact: Changes are inevitable for any observation network.

Goal: To provide scientific bases to develop operational practices in better managing changes at GRUAN sites from one instrument type to another and to accurately merge the two data segments to create a homogeneous time series.

Approaches: To make use of dual-sonde data collected at GRUAN sites (Lindenberg and Tateno) in the past either continuously or at times when changes were made.

Lindenberg dual-sonde data (high resolution (5s) with detailed metadata)

	Routine	<u>Sonde Types</u>	RS90fn	Sonde Types	RS92fn	Sonde Types	
1998	1449	RS80-30, RS80-15S, RS80-15NS, RS80-15N					
1999	1410	RS80-15N	24	FN90NC			
2000	1430	RS80-15N	56	FN90NC, FN9052			
2001	1457	RS80-15N	57	FN90NC, FN9052			
2002	1449	RS80-30S	54	FN90NC, FN9052, FN9040			
2003	1452	RS80-30S	63	FN90NC, FN9052, FN9040			
2004	1447	RS80-30S, RS92-AGP	83	FN90NC, FN9052, FN9040			
2005	1460	RS92-AGP	59	FN90NC, FN9052, FN9040			
2006	1468	RS92-AGP, RS92-SGP	58	FN90NC, FN9052			
2007	1748	RS92-SGP	107	FN90NC, FN9052, FN9040			
2008	1540	RS92-SGP, RS92-SGP(V)	60	FN90NC, FN9052	35	RS92-SGP	
2009	781	RS92-SGP(V)	15	FN90NC, FN9052	13	RS92-SGP	
TOTAL	17091						٩R

Temperature: Ground check

NCAR

Temperature difference (Routine-FN) at 500 hPa

