GCOS Reference Upper Air Network

Report GRUAN Lead Center

Holger Vömel,
Franz Immler, Michael Sommer
Head GRUAN lead center
Meteorological Observatory Lindenberg
DWD

The GCOS Reference Upper-Air Network is tasked to:

- Provide long-term high-quality upper-air climate records
- Constrain and calibrate data from more spatiallycomprehensive global observing systems (including satellites and current radiosonde networks)
- Fully characterize the properties of the atmospheric column

See WWW.GRUAN.ORG for more detail

Initial GRUAN stations

Select GRUAN requirements

Priority 1: Water vapor, temperature, (pressure and wind)

Stratospheric water vapor over Boulder

From Hurst et al. JGR, 2011

Water vapor trends in upper troposphere?

e.g.: Lindenberg 8km (0:00 UT)

Water vapor trends in upper troposphere?

e.g.: Lindenberg 8km (0:00 UT)

Water vapor trends in upper troposphere?

e.g.: Lindenberg 8km (0:00 UT)

- No trend estimate possible: Trend signals caused by instrumental change
- Observations have been done for numerical weather prediction, not for long term climate
- Instrumental change has not been managed
- Instrumental uncertainties and biases have not been well characterized or documented
- Meta data are incomplete

 These deficiencies are some of the motivators to establish the GCOS Reference Upper Air Network (GRUAN)

Focus on <u>reference</u> observations

A GRUAN reference observation:

- Is traceable to an SI unit or an accepted standard
- Provides a comprehensive uncertainty analysis
- Is documented in accessible literature
- Is validated (e.g. by intercomparison or redundant observations)
- Includes complete meta data description

Establishing Uncertainty

GUM concept:

- The "true value" of a physical quantity is no longer used
- Error is replaced by uncertainty
- A measurement = a range of values
 - generally expressed by m ± u
 - m is corrected for systematic effects
 - u is (random) uncertainty

References:

Guide to the expression of uncertainty in measurement (GUM, 1980)

Guide to Meteorological Instruments and Methods of Observation, WMO 2006, (CIMO Guide)

Reference Quality Upper-Air Measurements: Guidance for developing GRUAN data products, Immler et al. (2010), Atmos. Meas. Techn.

Establishing reference quality

Uncertainty example: Daytime temperature Vaisala RS92

Validation: Redundancy and Consistency

 Redundant observations are needed to test uncertainty estimates and consistency of measurements:

$$|m_1 - m_2| < k\sqrt{u_1^2 + u_2^2}$$

- No meaningful consistency analysis possible without uncertainties
- $\sqrt{100}$ if m₂ has no uncertainties use u₂ = 0 ("agreement within errorbars")

$ m_1 - m_2 < k\sqrt{u_1^2 + u_2^2}$	TRUE	FALSE	significance level
k=1	consistent	suspicious	32%
k=2	in agreement	significantly different	4.5%
k=3	-	inconsistent	0.27%

Redundant observations

Use uncertainty formalism to make use of redundant observations:

- Redundant observations continuously validate the understanding of instrumental performance
- Redundant observations in intensive campaigns place GRUAN observations in larger context
- Redundant observations maintain homogeneity across the network
- Identifies deficiencies in order to improve the measurements (instrumental upgrade, reprocessing)

Issues affecting long term trends

Use uncertainty formalism to improve long term trends:

- Identify, which sources of measurement uncertainty are systematic (calibration, radiation errors, ...), and which are random (noise, production variability ...)
- Develop and verify tools to identify and adjust systematic biases
- Maintain raw data and document every step in the data collection and processing chain

Managed change

Use uncertainty formalism to manage change:

- Determine instrumental uncertainties and biases of new system
- Remove systematic biases in new instrument and quantify random uncertainty
- Verify uncertainty estimate of new instrument in simultaneous (dual) observations

Summary

- GRUAN is a completely new approach to long term observations of upper air essential climate variables
- GRUAN requires a new data processing and data storage approach
- Focus on priority 1 variables to start: Water vapor and temperature
- Focus on reference observation:
 - ✓ quantified uncertainties
 - √ traceable
 - ✓ well documented
- Understand the uncertainties:
 - ✓ analyze sources
 - √ synthesize best estimate
 - ✓ verify in redundant observations

Extras

Water vapor over Lindenberg from CFH launches

Consistency in a finite atmospheric region

Co-location / co-incidence:

- Determine the variability (σ) of a variable (m) in time and space from measurement or model
- Two observations on different platforms are consistent if

$$|\mathbf{m}_1 - \mathbf{m}_2| < k\sqrt{\sigma^2 + u_1^2 + u_2^2}$$

 This test is only meaningful, i.e .observations are colocated or co-incident if:

$$\sigma < \sqrt{u_1^2 + u_2^2}$$

Distributed data processing

Principles of GRUAN data management

- Archiving of raw data (at site or lead center) is mandatory
- All relevent meta-data is collected and stored in a meta-data base (at the lead centre)
- For each measuring system just one data processing center
- Version control of data products. Algorithms need to be traceable and well documented.
- Data levels for archiving:
 - ✓ level 0: raw data
 - level 1: raw data in unified data format (pref. NetCDF)
 - ✓ level 2: processed data product → dissemination (NCDC)

What is GRUAN?

- GCOS Reference Upper Air Network
- Network for ground-based <u>reference</u> observations <u>for</u> <u>climate</u> in the free atmosphere in the frame of GCOS
- Initially 15 stations, envisaged to be a network of 30-40 sites across the globe

