

Swiss Confederation

The GRUAN Observing Station Payerne - Switzerland

Rolf Philipona, Gilbert Levrat, Gonzague Romanens, Arabella Mueller, Andreas Kräuchi

O **GRUAN** activities

- New humidity sensor on SRS since Mai 2009
- Participation at Int. Radiosonde intercomparison in China
- New digital radiosonde SRS-C34 since January 2011
- •GRUAN reference and test soundings
- Controlled balloon sounding
- •Lidar measurements first results

Q

Swiss analog Radiosonde SRS-400 Replacement of humidity sensor Mai 2009

Old

VIZ/SIPPICAN
Resistive hygristor

New

ROTRONIC HC2Capacitive polymer thin film sensor

Relative Humidity VIZ versus ROT Integrated Water Vapor (IWV) measurement

Relative Humidity at Yangjang CHINA

HC2 and **RS92** versus **SnowWhite**

Swiss digital Radiosonde SRS-C34 Operational 2011 – daily 00/12 LST

Swiss digital radiosonde SRS-C34 developed by MeteoLabor using GPS for pressure and wind

Temperature: Thermocouple

Humidity: ROTRONIC HC2 capacitive sensor

Altitude/Pressure: GPS

Wind Speed/Dir.: GPS

Swiss digital Radiosonde SRS-C34 Temperature - Humidity - Pressure sensors

Swiss analog Radiosonde SRS-400

BASORA control system for SRS-400

Secondary radar system which tracks the radiosonde and receives the PTU data from the radiosonde transmitter

Rolf Philipona

Swiss digital Radiosonde SRS-C34

ARGUS 37 control system for SRS-C34

Swiss digital Radiosonde SRS-C34

Versatility of SRS-C34

SRS-C34 + Ozone sonde
Oxidation of potassium iodide by ozone in an aqueous solution

SRS-C34 + SnowWhite (dew/frost point hygrometer)

Detection of dew or frost on gold mirror
by diode light beam

SRS-C34 + FLASH (Fluorescent Advanced Stratospheric Hygrometer)

Photodissociation of H₂O molecules with Lyman Alpha light source and detection of the fluorescence of excited OH radicals

SRS-C34 + COBALD (backscatter sonde)

Light flash from Xenon lamp at 490 and 940 nm

and measurement of backscattered light from ice crystals or aerosols

V

GRUAN - reference and test soundings

(1 x weekly)

Vaisala RS92 (nighttime) parallel sounding with operational SRS-C34 (DigiCORA MW31)

(1 x monthly)

SnowWhite dew/frost point hygrometer (nighttime) parallel sounding with SRS-C34 and RS92

(2 - 4 times per year)

FLASH and SnowWhite dew/frost point hygrometer parallel sounding with SRS-C34 and RS92 (SHOMING project UNI Bern)

(3 - 6 times per year)

COBALD and SnowWhite dew/frost point hygrometer parallel sounding with SRS-C34 and RS92 (collaboration with ETHZ)

Q

Controlled balloon sounding

Rolf Philipona

Federal Office of Meteorology and Climatology

MeteoSwiss

Controlled balloon sounding

Rolf Philipona

Federal Office of Meteorology and Climatology

MeteoSwiss

Controlled balloon sounding

- Predefined sounding altitude
- Controlled ascent and descent speed
- Swing suppression and quiescent profiling during ascent and descent
- Minor control over impact location
- GPS tracking and position transmission by cell phone

Water Vapor Raman Lidar RALMO

Lidar for water vapor and temperature profiling

Validation in progress

Water Vapor Raman Lidar RALMO Humidity measurements availability Sep09 – Aug10

U

Water Vapor Raman Lidar RALMO Maximum altitude during Night Sep09 - Aug10

V

Water Vapor Raman Lidar RALMO Maximum altitude during Day Sep09 - Aug10

Water Vapor Raman Lidar RALMO Availability Night / Day decreases with altitude

Water Vapor Raman Lidar RALMO Humidity profile measurements June 2010

Water Vapor Raman Lidar RALMO Humidity profiles every half hour

Water Vapor Raman Lidar RALMO Lidar and SRS-400 humidity profile

Water Vapor Raman Lidar RALMO Mixing ratio Lidar – SRS at different altitudes

Difference (lidar - srs) versus time | cloudless days, cloudless nights 2000 m Oct Nov Feb Jun Jul Dec Jan Mar Apr May Aua day MR_{lidar} – MR_{srs} [g/kg] night 4000m Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 6000m Jan Feb Oct Dec Mar Apr Jul Aug Nov May Jun Month (Sept 2009 - 5 Aug 2010)

Summary

The analog radiosonde SRS-400 has been replaced by the digital sonde SRS-C34

Humidity measurement have been improved with a capacitive polymer thin film sensor but need further improvement

Controlled balloon sounding for upward and downward profile sounding

Lidar measurements are being analyzed and processed and compared to radiosondes