

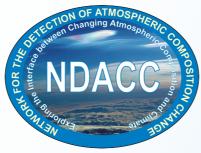
Coordination of efforts with NDACC

Geir O. Braathen Atmospheric Environment Research Division, WMO's Research Department & NDACC Co-Chair

OMM

Dobson, Brewer & Ozonesondes are now part of GCOS

Dobson & Brewer Networks constitute: WMO/GAW GCOS Global Baseline Total Ozone Network


Ozonesonde Network constitutes:

WMO/GAW GCOS Global Baseline Profile Ozone Network

Endorsed by GCOS AOPC-XIII 23 April 2007

Adopted at the 15th session of the GCOS Steering Committee in Paris 16-19 Oct 2007

WMO OMM

 $\dot{\mathbf{x}}$

GAW/SHADOZ/NDACC OGCOS **Ozonesonde stations**

63 stations

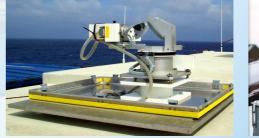
 \bigstar

5

 \bigstar

What is NDACC?

Network for the Detection of Atmospheric Composition Change


Priorities

- Studying the temporal and spatial variability of atmospheric composition and structure,
- Detecting trends in overall atmospheric composition and understanding their impacts on the stratosphere and troposphere,
- Establishing links between climate change and atmospheric composition,
- Calibrating and validating space-based measurements of the atmosphere,
- Supporting process-focused scientific field campaigns, and
- Testing and improving theoretical models of the atmosphere.

WMO OMM

NDACC Site Selection

Only one type of stations

- There used to be primary and secondary stations, depending on the suite of measurements and the commitment
- The quality criteria were and are the same for all stations/instruments
- Some Complementary Stations had all instrument types and long term commitments
- Original designation misleading no quality difference
 - Original designation compromised long-term funding commitments

Stations in different regions

- Polar regions (N and S)
- Mid-latitudes in both hemispheres
- Tropical and equatorial sites

NDACC Site Selection

A station can consist of several sites

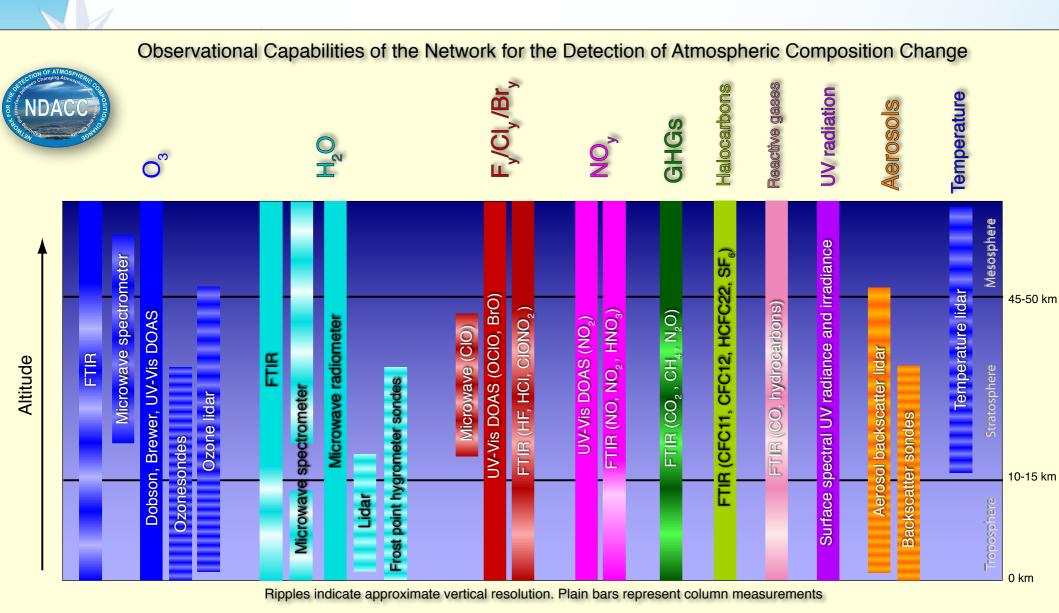
- Arctic site: Eureka, Thule, Søndre Strømfjord, Ny-Ålesund
- Alpine site: Jungfraujoch, OHP, Payerne, Bern, Zimmerwald,

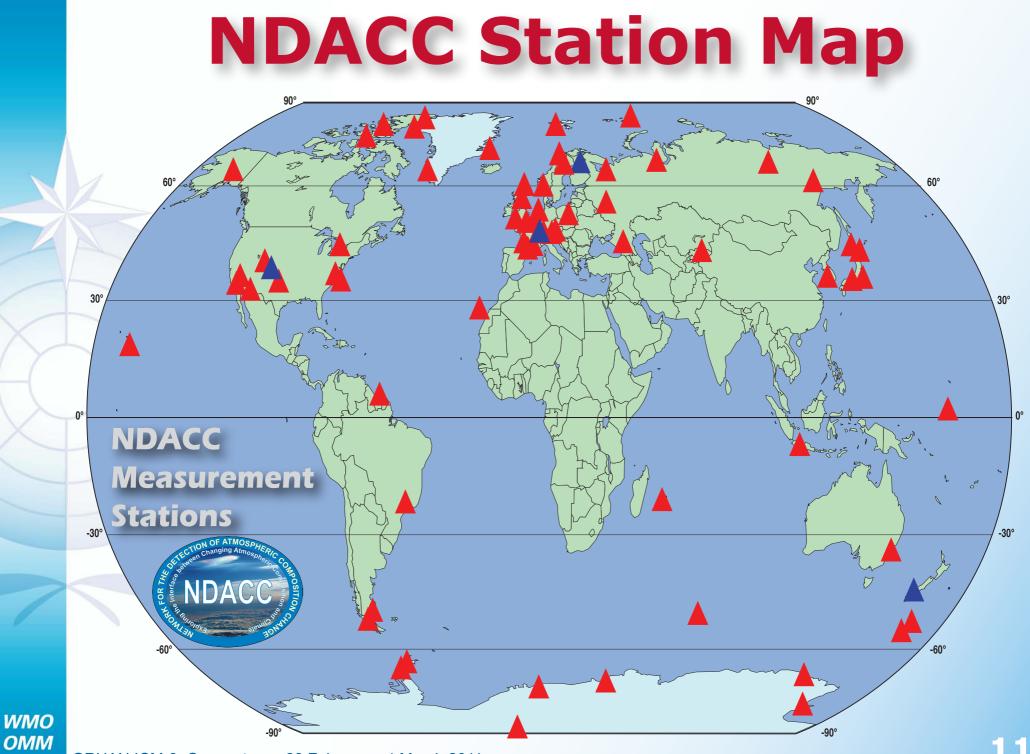
Arosa, Garmisch Partenkirchen, Zugspitze, Hohenpeissenberg

Antarctic site: South Pole, Dumont d'Urville, Arrival Heights, McMurdo and Scott Base.

NDACC: Focus on data quality Strict criteria for being and staying affiliated Network governed by a number of protocols Data protocol: Compromise between data availability & IPR Validation protocol Instrument intercomparison protocol **Regular intercomparison campaigns** Mobile systems (Lidar, FT-IR) Gathering of many instruments at the same location **Organisation of NDACC** Working groups UV-Vis, Spectral UV, Ozone&aerosol sondes, FT-IR, MW, Lidars, Dobson&Brewer Working groups for Satellites, Theory & Analysis, H₂O, O₃

 Steering Committee with Working Group representatives + peer and ex-officio members (~40 in all)

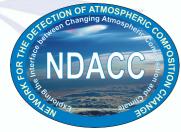

GRUAN ICM-3. Queenstown, 28 February - 4 March 2011


WMO OMM

NDACC Organizational Chart

Overview of NDACC species and how they are measured: The NDACC Observational Capability Chart

NDACC microwave sites


Ozone Characteristics

Altitude range: 20-70 km Vertical resolution: 8-12 km

Water vapour Characteristics

Altitude range: 20-70 km Vertical resolution: 8-12 km

1

WMO OMM

GRUAN ICM-3. Queenstown, 2

NDACC lidar sites

 \Rightarrow

Ozone

Characteristics

Altitude range: 10 - 50km Vertical resolution: 0.5 - 5km Network homogeneous within ±2% in the 20-35km range

Temperature Characteristics

Altitude range: 10-80 km Vertical resolution: 1-6 km Network homogeneous within ±1K in the 35 - 60 km range

NDACC lidar sites

Water vapour (Raman and DIAL)

Characteristics

WMO

Altitude range: ground to 8-17 km Vertical resolution: 0.1 km Detection limit: 15 ppb Accuracy: Depends on calibration source (5-20%) Precision: 0.001 to 50%

Essential climate variables (ECVs)

Variable	Priority	Lidar	FT-IR	μ wave	Dobson Brewer UV-Vis	Sondes
Temperature	1	X				x
Total water vapour	1		X			
Profile water vapour		X	X	X		x
Total Ozone	2		X		X	
Profile ozone	2	X	X	X		x
Methane	2					x

Initial station candidates

ARM Sites, Lindenberg, Camborne, Payerne, Cabauw, Boulder, Sodankylä, Heredia, Lauder, Beltsville

WMO

Recommendations for GRUAN

Don't Reinvent the Wheel

- ✓ Draw on capabilities of established high-quality networks
- Augment these capabilities as needed to provide key climate variables on a global scale

Instrument-Specific WGs First

- Include Engagement of Satellite Community
- Validation enables patching of long-term datasets
- GRUAN is the Reference Network for GUAN
- Emphasis on measurement accuracy & precision
- Build-up phase is better supported by an instrument-specific organization
- Mirror NDACC instrument WG functions

Parameter-Specific WGs Second

Once Instruments Are Fully Characterized

Ø

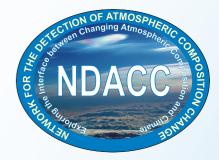
GRUAN NDACC Collaboration

- **NDACC Is Eager to Cooperate & Collaborate**
 - Infrastructure & Instruments at NDACC Sites Can Aid in Campaign Implementation
- Instrument intercomparison & characterization
- Second Se
- Section 2017 Secti
- See Thierry Leblanc's presentation earlier this week

Ø

GRUAN/NDACC Collaboration

- **Commonality of Interests**
 - Water Vapor Profiles growing NDACC heritage
 - Campaigns for measurement characterization
 - Analyses to guide measurement requirements
 - Ozone Profiles strong NDACC heritage

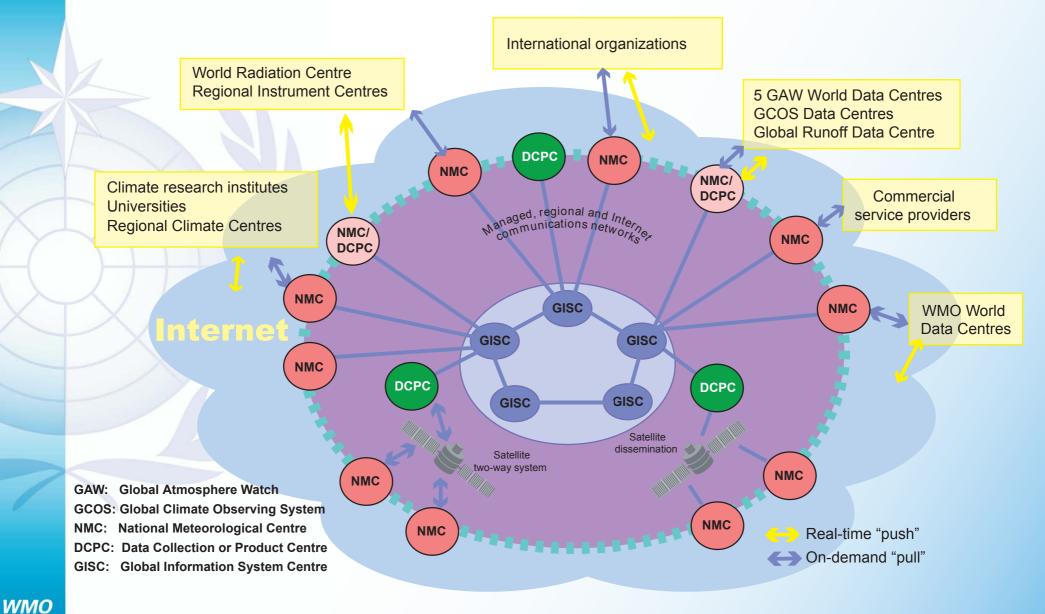

How can GRUAN benefit from NDACC?

Infrastructure & instruments at NDACC sites can aid in intercomparison campaigns – e.g., Raman Lidar for water vapor profiles

How can NDACC benefit from GRUAN?

- GRUAN Measurements May Be More Frequent at Some Locations
- Useful in Resolving Measurement / Model Differences

2009: Inception of NDACC Cooperating Network Affiliation



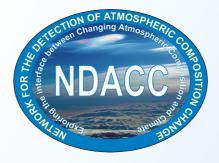
Recognition of measurement capabilities developed externally to NDACC

- Regional, Hemispheric, or Global Networks Operating Independent of NDACC
- Existing quality assurance guidelines
- Existing operational requirements
- Existing data archiving policies
- Existing national or international recognition
- Mutual Benefit of Strong Measurement and Scientific Cooperation

Agreements finalized with five networks AGAGE, AERONET, MPLNET, NOAA-HATS and SHADOZ

WMO Information System (WIS)

OMM GRUAN


Acknowledgements

Mike Kurylo

NDACC Lidar Working Group

NDACC Microwave Working Group

