Climate modelling needs for upper-air data

Johannes Quaas

Max Planck Institute for Meteorology Hamburg, Germany

johannes.quaas@zmaw.de www.mpimet.mpg.de/~quaas.johannes

Contents

- 1) Central issue in climate modelling: clouds
- 2) Aerosol-cloud interactions: Parameter relationships
- 3) Higher moments of subgrid-scale distributions
- 4) Parameterization **testbed**
- 5) Conclusion

Summary for Policymakers

Human and Natural Drivers of Climate Change

[...]

Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W m⁻² and an indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W m⁻². These forcings are now better understood than at the time of the TAR due to improved *in situ*, satellite and ground-based measurements and more comprehensive modelling, but remain the dominant uncertainty in radiative forcing. Aerosols also influence cloud lifetime and precipitation. {2.4, 2.9, 7.5} [...]

p.4

Understanding and Attributing Climate Change

The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative forcing. It is not a projection but is defined as the global average surface warming following a doubling of carbon dioxide concentrations. It is *likely* to be in the range 2°C to 4.5°C with a best estimate of about 3°C, and is very unlikely to be less than 1.5°C. Values substantially higher than 4.5°C cannot be excluded, but agreement of models with observations is not as good for those values. Water vapour changes represent the largest feedback affecting climate sensitivity and are now better understood than in the TAR. Cloud feedbacks remain the largest source of uncertainty. {8.6, 9.6, Box 10.2} [...] p.12

Summary for Policymakers

Human and Natural Drivers of Climate Change

Understanding and Attributing Climate Change

[...]

Anthropogenic contributions to aerosols (primarily sulphate organic carbon black carbon nitrate and

dust dire

"Cloud feedbacks remain the largest source of uncertainty."

-0.3] W m⁻². These forcings are now better understood than at the time of the TAR due to improved *in situ*, satellite and ground-based measurements and more comprehensive modelling, but remain the dominant uncertainty in radiative forcing. Aerosols also influence cloud lifetime and precipitation. {2.4, 2.9, 7.5} [...] The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative forcing.

a projection but is defined as the global average warming following a doubling of carbon concentrations. It is *likely* to be in the range 2 C to 4.5°C with a best estimate of about 3°C, and is *very unlikely* to be less than 1.5°C. Values substantially higher than 4.5°C cannot be excluded, but agreement of models with observations is not as good for those values. Water vapour changes represent the largest feedback affecting climate sensitivity and are now better understood than in the TAR. Cloud feedbacks remain the largest source of uncertainty(8.6, 9.6, Box 10.2) [...] *p.12*

Summary for Policymakers

Human and Natural Drivers of Climate Change

[...]

Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W m⁻² and an indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W m⁻². These forcings re now better understood than at the time of the TAR due to improved *in situ*, satellite and ground-based measurements and more comprehensive modelling, but remain the dominant uncertainty in radiative forcing. erosols also influence cloud lifetime and precipitation. {2.4, 2.9, 7.5} [...]

р.4

Understanding and Attributing Climate Change

The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative forcing.

"These forcings [...] remain the dominant uncertainty in radiative forcing."

higher than 4.5°C cannot be excluded, but agreement of models with observations is not as good for those values. Water vapour changes represent the largest feedback affecting climate sensitivity and are now better understood than in the TAR. Cloud feedbacks remain the largest source of uncertainty. {8.6, 9.6, Box 10.2} [...]

Summary for Policymakers

Human and Natural Drivers of Climate Change

[...]

Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) together produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W m⁻² and an indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W m⁻²These forcings are now better understood than at the time of the TAR due to improved *in situ*, satellite and ground-based measurements and more comprehensive modelling, but remain the dominant uncertainty in radiative forcing. Aerosols also influence cloud lifetime and precipitation. {2.4, 2.9, 7.5} [...]

Understanding and Attributing Climate Change

The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative forcing.

"These forcings are now better understood than at the time of the TAR due to improved *in situ*, satellite and ground-based measurements and more comprehensive modelling, **but**..."

р.

Climate model process evaluation

A main science task: development of pertinent observable metrics

Aerosol-cloud interactions

A main science task: development of pertinent observable metrics

Slope =
$$\frac{\Delta \ln \text{CDNC}}{\Delta \ln \text{AOD}}$$

CDNC – cloud droplet number concentration [cm⁻³] AOD – Aerosol optical depth

Quaas et al., Atmos. Chem. Phys., 2009

Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions 9/30

Quaas et al., Atmos. Chem. Phys., 2009Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions10/30

Quaas et al., Atmos. Chem. Phys., 2009Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions11/30

Quaas et al., Atmos. Chem. Phys., 2009Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions12/30

	TABLE I. Physical parameters related to aerosols, clouds, and dynamics needed to evaluate parameterizations of aerosol indirect effects.				
	Typical value or range	Description	Parameter		
רן	10 ⁶ -10 ¹¹ m ⁻³	Aerosol number concentration	N _a		
	Lognormal	Aerosol size distribution	SD		
I ≻ Aerosol	0-1	Soluble fraction of aerosol population	SF		
	—	Aerosol type	AT		
J	0.6–0.99	Single-scattering albedo	SSA		
<u>ן</u>	Above/in/below	Position of black carbon w.r.t. the cloud	BC(z)		
	0-1	Cloud cover	СС		
	10 ⁶ -10 ¹⁰ m ⁻³	Cloud droplet number concentration	N _d		
	10 ² -10 ⁹ m ⁻³	Ice crystal number concentration	N,		
Clouds	Lognormal or gamma distribution	Cloud droplet size distribution	SD _d		
	Lognormal or gamma distribution	lce crystal size distribution	SD,		
	0-103 kg m-3	Liquid water content	LWC		
	0-103 kg m-3	Ice water content	IWC		
)	0–10 ⁻⁶ kg kg ⁻¹ s ⁻¹	Autoconversion rate	AU		
	–10 to 10 m s ⁻¹	Vertical wind speed	ω		
_	20%–100% (up to 170% w.r.t. ice)	Relative humidity	RH		
f ment	0-10 m ² s ⁻²	Turbulent kinetic energy	TKE		
J	210–273 K	Temperature	Т		

Lohmann, Quaas, Feichter, Kinne, Bull. Am. Meteorol. Soc. 2007

Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions

Statistical cloud scheme

Statistical cloud scheme

Statistical cloud scheme: simulation of higher moments

Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions 16

Statistical cloud scheme

MODIS satellite Data

Model – Satellite Data

Skewness

Deviation skewness

global mean bias -8.46%

Torsten Weber, Max Planck Institute for MeteorologyAerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions17/30

Statistical cloud scheme

KNMI parameterization testbed

- Aim: evaluation and improvement of GCM parameterizations
- Exploitation of time-series of super-site observations
- ► GCMs in **single-column-mode** (SCM)
- Sensitivity studies, evaluation, test of new parameterizations

Courtesy Roel Neggers, KNMI

Neggers et al., in preparation for Bull. Am. Meteorol. Soc.Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions19/30

Step I: COSP evaluation of clouds in ECHAM5

CALIPSO Satellite

Figure courtesy of Christine Nam, MPI Hamburg

JFM 2007 Cloud cover

ECHAM5 significantly lacks low and midlevel clouds

Christine Nam, Max Planck Institute for Meteorology

Observed (x) versus SCM (y) monthly means at 12 UTC for 2007-2009 at Cabauw

Neggers et al., in preparation for Bull. Am. Meteorol. Soc.

Cloudnet product from Radar-/Lidar observations

Illingworth et al., Bull. Am. Meteorol. Soc., 2007Aerosol-cloud relations • Higher moments • Parameterization testbed • Conclusions22/30

Cloudnet

Large-eddy simulation

Single-column model

Large-eddy simulation

Single-column model

Tme [day]

۲% ا

fraction

Cloud

New parameterization

Large parameter set crucial for process-oriented evaluations

- Specific and relative humidity priorities (satellites: only coarse resolution)
- Sound statistics essential Frequent sampling, long time-series, global network
- Uncertainty quantification highly welcomed Data assimilation, satellite data assessment
- Easy access would be welcomed Netcdf format, web dissemination

- Large parameter set crucial for process-oriented evaluations
- Specific and relative humidity priorities (satellites: only coarse resolution)
- Sound statistics essential Frequent sampling, long time-series, global network
- Uncertainty quantification highly welcomed Data assimilation, satellite data assessment
- Easy access would be welcomed Netcdf format, web dissemination

- Large parameter set crucial for process-oriented evaluations
- Specific and relative humidity priorities (satellites: only coarse resolution)
- Sound statistics essential Frequent sampling, long time-series, global network

- Large parameter set crucial for process-oriented evaluations
- Specific and relative humidity priorities (satellites: only coarse resolution)
- Sound statistics essential Frequent sampling, long time-series, global network
- Uncertainty quantification highly welcomed Data assimilation, satellite data assessment
 - Easy access would be welcomed Netcdf format, web dissemination

- Large parameter set crucial for process-oriented evaluations
- Specific and relative humidity priorities (satellites: only coarse resolution)
- Sound statistics essential Frequent sampling, long time-series, global network
- Uncertainty quantification highly welcomed Data assimilation, satellite data assessment
- Easy access would be welcomed Netcdf format, web dissemination

Thank you

Johannes Quaas

Max Planck Institute for Meteorology Hamburg, Germany johannes.quaas@zmaw.de www.mpimet.mpg.de/~quaas.johannes

Acknowledgements

The **AEROCOM** team Roel **Neggers** et al., KNMI C. **Nam**, T. **Weber**, V. **Grützun**, MPI-M

		TABLE I. Physical parameters related to aerosols, clouds, and dynamics needed to evaluate parameterizations of aerosol indirect effects.				
		Typical value or range	Description	Parameter		
	٦	10 ⁶ -10 ¹¹ m ⁻³	Aerosol number concentration	N _a		
		Lognormal	Aerosol size distribution	SD		
Aerosols	≻	0-1	Soluble fraction of aerosol population	SF		
		—	Aerosol type	AT		
	J	0.6–0.99	Single-scattering albedo	SSA		
		Above/in/below	Position of black carbon w.r.t. the cloud	BC(z)		
		0-1	Cloud cover	СС		
		10 ⁶ -10 ¹⁰ m ⁻³	Cloud droplet number concentration	N _d		
		10 ² -10 ⁹ m ⁻³	Ice crystal number concentration	N _i		
Clouds	≻	Lognormal or gamma distribution	Cloud droplet size distribution	SDd		
		Lognormal or gamma distribution	lce crystal size distribution	SD,		
		0-103 kg m-3	Liquid water content	LWC		
		0-103 kg m-3	Ice water content	IWC		
	ノ	0-10 ⁻⁶ kg kg ⁻¹ s ⁻¹	Autoconversion rate	AU		
- ·	٦	-10 to 10 m s ⁻¹	Vertical wind speed	ω		
Environ-	Ĺ	20%–100% (up to 170% w.r.t. ice)	Relative humidity	RH		
ment	ſ	0-10 m ² s ⁻²	Turbulent kinetic energy	TKE		
	J	210–273 K	Temperature	Т		

Lohmann, Quaas, Feichter, Kinne, Bull. Am. Meteorol. Soc. 2007 32/30

TABLE 2. Attribution of the parameters listed in Table 1 to the evaluation of the different aerosol indirect effect mechanisms, including the required data resolution.

Evaluation	Aerosols	Clouds	Large-scale	Required resolution (x, z, t)
Cloud albedo effect	N_a , SD _a , SF _a , AT	N_d , SD $_d$, LWC, CC	w, RH	Ikm, 100 m, Ih
Cloud lifetime effect	—	N _d SD _d , LWC, AU, CC	TKE	I km, 100 m, I h
Semi-direct effect	N_{a} , SSA, BC(z)	LWC, CC	RH	10 km, 1 km, 6 h
Aerosol effects on mixed- phased and ice clouds	N _a , SD _a , SF _a , AT	N _i , SD _i , IWC, CC	w, RH, <i>T</i>	I km, 100 m, I h

Cloud albedo effect (first aerosol indirect effect)

TABLE 2. Attribution of the parameters listed in Table 1 to the evaluation of the different aerosol indirect effect mechanisms, including the required data resolution.

Evaluation	Aerosols	Clouds	Large-scale environment	Required resolution (x, z, t)
Cloud albedo effect	N SD SE AT	N SD I WC CC	w RH	lkm lûûm lb
Cloud lifetime effect		N_d SD _d , LWC, AU, CC	TKE	I km, 100 m, I h
 Semi-direct effect	N_{a} , SSA, BC(z)	LWC, CC	RH	10 km, 1 km, 6 h
Aerosol effects on mixed- phased and ice clouds	N _a , SD _a , SF _a , AT	N _i , SD _i , IWC, CC	w, RH, <i>T</i>	1 km, 100 m, 1 h

Cloud lifetime effect (second aerosol indirect effect)

TABLE 2. Attribution of the parameters listed in Table 1 to the evaluation of the different aerosol indirect effect mechanisms, including the required data resolution.

Evaluation	Aerosols	Clouds	Large-scale environment	Required resolution (x, z, t)
Cloud albedo effect	N_{a} , SD_{a} , SF_{a} , AT	N _d , SD _d , LWC, CC	w, RH	I km, 100 m, 1 h
Cloud lifetime effect		N.SD., LWC, AU, CC	TKE	km. 100 m. 1 h
Semi-direct effect	N_{a} , SSA, BC(z)	LWC, CC	RH	10 km, 1 km, 6 h
Aerosol effects on mixed- phased and ice clouds	N _a , SD _a , SF _a , AT	N _i , SD _i , IWC, CC	w, RH, <i>T</i>	1 km, 100 m, 1 h

Semi-direct aerosol effect

TABLE 2. Attribution of the parameters listed in Table 1 to the evaluation of the different aerosol indirect effect mechanisms, including the required data resolution.

Evaluation	Aerosols	Clouds	Large-scale environment	Required resolution (x, z, t)
Cloud albedo effect	N_{a} , SD_{a} , SF_{a} , AT	N _d , SD _d , LWC, CC	w, RH	I km, 100 m, I h
Cloud lifetime effect		N_{d} SD _d , LWC, AU, CC	TKE	I km, 100 m, I h
Semi-direct effect	N, SSA, BC(z)	LWC, CC	RH	10 km, 1 km, 6 h
Aerosol effects on mixed- phased and ice clouds	N_{g} , SD $_{g}$, SF $_{g}$, AT	N _i , SD _i , IWC, CC	w, RH, <i>T</i>	I km, 100 m, I h

Aerosol effects on mixed-phase and ice clouds

Statistical cloud scheme				
Physical quantity	Desired resolution			
Water vapour mixing ratio [kg kg-1]	1 km x 100 m x 1 min			
Cloud water mixing ratio [kg kg-1]				
Temperature [K]				
Convective mass-flux [m s-1]				
Turbulence kinetic energy [m ² s ⁻²]				
Autoconversion rate [kg kg ⁻¹ s ⁻¹]				

