Management of Change for GRUAN: Lessons learn from Lindenberg radiosonde data

Junhong (June) Wang and Kate Young, NCAR/EOL

Michael Sommer, Holger Voemel, Fraz Immler GRUAN Lead Center, DWD

Tom Peterson, NCDC/NOAA

What is the problem?

To identify break points: To make adjustments:

- Reference time series & methods
 Adjustment methods
- Metadata and other info for validation Last or one segment as reference

Fact: Changes are inevitable for any observation network.

Goal: How can we do better in GRUAN in the following areas?

- 1. To document detailed changes
- 2. To assess impacts of changes
- 3. To minimize impacts

Questions to be answered: What co-incident, independent (i.e. redundant) measurements, how much and what kind of associated metadata, and how much overlap between old and new instruments are needed?

Approach:

- 1. To select the long-term data collected from GRUAN stations with reliable metadata and redundant measurements;
- 2. To analyze the data to assess what practices are essential to document the changes;
- 3. To analyze the overlap and redundant measurements to quantify the impacts of the changes;
- 4. To make recommendations on best practices for GRUAN.

Deutscher Wetterdienst

Humidity Profile Lindenberg / corrected:

from Horst Dier (MOL-RAO)

Lindenberg dual-sonde data (high resolution (5s) with detailed metadata)

	<u>Routine</u>	Sonde Types	RS90fn	<u>Sonde Types</u>	RS92fn	Sonde Types	
1998	1449	RS80-30, RS80-15S, RS80-15NS, RS80-15N					
1999	1410	RS80-15N	24	FN90NC			
2000	1430	RS80-15N	56	FN90NC, FN9052			
2001	1457	RS80-15N	57	FN90NC, FN9052			
2002	1449	RS80-30S	54	FN90NC, FN9052, FN9040			
2003	1452	RS80-30S	63	FN90NC, FN9052, FN9040			
2004	1447	RS80-30S, RS92-AGP	83	FN90NC, FN9052, FN9040			
2005	1460	RS92-AGP	59	FN90NC, FN9052, FN9040			
2006	1468	RS92-AGP, RS92-SGP	58	FN90NC, FN9052			
2007	1748	RS92-SGP	107	FN90NC, FN9052, FN9040			
2008	1540	RS92-SGP, RS92-SGP(V)	60	FN90NC, FN9052	35	RS92-SGP	
2009	781	RS92-SGP(V)	15	FN90NC, FN9052	13	RS92-SGP	
TOTAL	17091						٩R

Information for change point identification

- Metadata: hardware and software changes
- Solar zenith angle
- Co-incident RS90/92-FN comparisons
- GPS-PW comparisons
- * MWRP comparisons

Metadata for change point identification

SZA for change point identification

Dual sonde data for change point identification

Concerns on dual-sonde data

Side-by-side or on the same baloon?

Temperature difference (Routine-FN) at 500 hPa

Temperature difference (Routine-FN) at 1000 hPa

Temperature: Ground check

Conclusion and future work

- 1. Detailed metadata are proved very useful; 4-times daily soundings provide good diurnal sampling.
- 2. Regular dual-sonde data provide independent information to evaluate the performance of routine soundings, especially at change points.
- 3. Scatters in comparisons of dual sonde humidity data raise concerns.
- 1. To investigate other factors (batch numbers, separation distance, ...) in order to understand the differences in routine and FN data.
- 2. To develop correction methods for routine data using FN data.
- 3. To study the amount of overlap dual sonde data required;
- 4. GPS and MWRP data will be analyzed to evaluate the value of redundant data in managing the sonde changes.

A CLIMATE CONTINUITY STRATEGY FOR THE RADIOSONDE REPLACEMENT SYSTEM TRANSITION

Thomas C. Peterson * and Imke Durre

- Only for temperature and only over contiguous U.S.
- 200 flights spread out over all four seasons required to achieve <0.05C discontinuity

Dual sonde data for change point identification

Management of Change

1.Lindenberg 12-year routine and RS90/92-FN radiosonde data:

- •Identify changes and quantify the impacts of changes:
 - 1) Metadata: hardware and software changes
 - 2) Solar zenith angle
 - 3) Co-incident RS90/92-FN comparisons: change points, impacts and number of dual soundings (this can also be used to study scheduling protocols: is 4/month sampling (00/12) enough to calculate monthly mean comparing with 4/daily?)
 - 4) GPS-PW comparisons
 - 5) MWRP comparisons: change points and impacts

Deutscher Wetterdienst

Meteorological Observatory Lindenberg Richard Aßmann Observatory

FN-Method

Leiterer, U. at al.; 2004: A Correction Method for RS80-A Humicap Profiles and their Validation by Lidar Backscattering Profiles in Tropical Cirrus Clouds. JAOT, Vol. 22, No. 1, 18-29.

NCAR

Managing Change

- 1. To document changes
- 2. To assess impacts of changes
- 3. To minimize impacts

