

Water Vapour variability at different scales

Xavier Calbet, AEMET (xcalbeta@aemet.es) Cintia Carbajal Henken, Gael Kermarrec, Zhigou Deng

> 11 March 2024 GRUAN ICM-15

Background: Sonde versus Sounders

- Matching Sonde RTM with IR Hyper
 - Small Samples: Calbet et al. (AMT 2011,2016,2017)

Big Samples: Sun et al. (Rem. Sen. 2021)

Variability of Water Vapour

Two different scales

Simulation

Reality

Variability of Water Vapour within FOV

Variability of Water Vapour within FOV

RTM in an inhomogeneous FOV

• Finally, if we take the effects of all the vertical profile levels, we get the equation from the following slide

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA

RTM in an inhomogeneous FOV

RTM calculation for an inhomogeneous FOV, where:

- < > means spatial average
- R are radiances
- w is humidity
- i, j are the vertical level indices

Due to non-linearities: The average of the radiances from different profiles is NOT the radiance of the average of the profiles

$$<\delta R>\approx \sum_{i=1}^{All\,Levs}\frac{dR}{dw_i}<\delta w_i>+\sum_{i=1}^{All\,Levs}\sum_{j=1}^{All\,Levs}\frac{1}{2}\frac{d^2R}{dw_idw_j}<\delta w_i\delta w_j>$$

RTTOV IASI Radiances from Best State Estimate

8

Sodankylä 2007/07/17 08:18

Previous result (ITSC-23): small sample for IASI

Previous result (ITSC-23): small sample for IASI

Comparison in Brightness **Temperature** Space \rightarrow Improvement of around 0.5K

A TRANSICIÓN ECOLÓGICA

TERIO

IASI Radiances with and without WV Inhomogeneities

Background: Sonde versus Sounders

- Including WV Inhomogeneities in matching Sonde RTM with Sounders
 - MW Theoretical: Calbet et al. (AMT 2018)

Structure Function of WV from Sondes, MSG and OLCI

Calbet et al. 2022, AMT

Structure Function of WV from Ground Station and OLCI

New

Discussion

- Critical: sequential sondes (launches), reference CFH measurement (or GRUAN processing)
- Structure function will be extended to GNSS measurements
- A comparison of NWP, GNSS, Ground Station and OLCI will be done, studying the effect of different spatial resolutions
- After this an extension to bigger samples is necessary:
 - Current technique requires sequential sondes
 - Perhaps a different solution should be sought (Lidars??)
- Perhaps GNSS biases comes from WV inhomogeneities within the field of regard of GNSS

