The ALBATROSS laser spectrometer for balloon-borne measurements of UTLS water vapor: Laboratory and in-flight validation

Simone Brunamonti, Lukas Emmenegger and Béla Tuzson

Empa, Laboratory for Air Pollution/Environmental Technology, Dübendorf, Switzerland

Materials Science and Technology

GRUAN Implementation and Coordination Meeting (ICM-15), 14. March 2024, Bern, Switzerland simone.brunamonti@empa.ch

Motivation

- ALBATROSS instrument description
- Laboratory-based validation
- In-flight validation
- Conclusions and outlook

simone.brunamonti@empa.ch | GRUAN ICM-15

UTLS water vapor and climate

- Water vapor (H₂O) is the strongest natural greenhouse gas in the Earth's atmosphere
- In the UTLS (upper troposphere–lower stratosphere):
 - Small changes in H₂O have a strong impact on global surface warming (e.g., Solomon *et al.*, 2010)
 - Microphysical processes (cirrus clouds) determine the H₂O content of the stratosphere
- Accurate measurements of UTLS H₂O are crucial for reliable climate predictions

Balloon-borne measurements of UTLS water vapor

GCOS 2022 ECVs Requirements (GCOS-245)

 $2 \cdot \sigma$ uncertainty @ vertical resolution and long-term stability for quantity of interest

	UT/LS	Middle Stratosphere & Mesosphere
Goal 2% MR @ 10 m	0.5 %RHi @ 10 m 0.1 F ALBATROSS lab <0.5 come, accord <0.1 ppmv / decade	oratory validation Brunamonti <i>et al.</i> , 2023 <0.2 ppmv / decade
Breakthrough 5% MR @ 100 m	1.0 %RHi @ 100 m 0.25 ppmv @ 100 m 0.5 %Rhi / decade 0.1 ppmv / decade	0.25 ppmy @ 1000 m CFH/FPH 0.2 ppmv / decade
Threshold 10% MR @ 250 m	2.0 %RHi @ 250 m 0.5 ppmv @ 250 m CFH/FPH 2.0 % 0.25 ppmv / decade	0.5 ppmv @ 3000 m 0.5 ppmv / decade

Cryogenic frostpoint hygrometer (CFH/FPH)

- Current reference instrument in GRUAN
- Ongoing transition from R23 to alternative low-GWP coolant (ethanol/dry ice)

simone.brunamonti@empa.ch | GRUAN ICM-15

ALBATROSS laser spectrometer for UTLS water vapor

- Mid-IR laser absorption spectroscopy
- Compact and robust optical design
- Lightweight (< 3.5 kg)
- Fast response (1 Hz)
- Calibration-free retrieval

SC-MPC diameter	
Optical path length	(
Sampling technique	(
H ₂ O transition used	
QCL tuning range	
Acquisition rate	
Acquisition method	
Power consumption	
Total weight	

10.8 cm 6 m Open-path 1662.8 cm⁻¹ ($\lambda \approx 6 \mu$ m) ~1 cm⁻¹ (ICW driving) 1 Hz 3000 co-averaged spectra 15 W 3.45 kg (w/insulation)

Graf et al., 2021

ALBATROSS laser spectrometer for UTLS water vapor

- Mid-IR laser absorption spectroscopy
- Compact and robust optical design
- Lightweight (< 3.5 kg)
- Fast response (1 Hz)
- Calibration-free retrieval

SC-MPC diameter	10.8 cm
Optical path length	6 m
Sampling technique	Open-pa
H ₂ O transition used	1662.8 c
QCL tuning range	~1 cm⁻¹
Acquisition rate	1 Hz
Acquisition method	3000 со
Power consumption	15 W
Total weight	3.45 kg

6 m Open-path 1662.8 cm⁻¹ ($\lambda \approx 6 \mu$ m) ~1 cm⁻¹ (ICW driving) 1 Hz 3000 co-averaged spectra 15 W 3.45 kg (w/insulation)

Laboratory-based validation

- Collaboration with METAS (Swiss Federal Institute of Metrology)
- SI-traceable reference gases generated by dynamicgravimetric permeation method
- UTLS-relevant conditions:
 - 2.5–35 ppm H₂O (uncertainty < 1.5 %)
 - 30–250 hPa pressure

Measured spectra

Integration time = 50 s

Brunamonti et al., 2023

SNR ≈ 200

SNR ≈ 2000

d

b

1663

Spectroscopic retrieval

- H₂O amount fraction retrieved by minimizing the fitting residuals (i.e., observed spectra – model function)
- Required input:
 - Environmental parameters (p, T, OPL)
 - Molecular parameters (line-specific)
 - Line shape model

Voigt profile

- Standard line shape model in spectroscopy
- Molecular parameters available in HITRAN database

Quadratic Speed-Dependent Voigt profile (qSDVP)

- Includes molecular-speed dependence of collisional broadening
- Molecular parameters not available in the literature →
 Determined empirically

Brunamonti et al., 2023

simone.brunamonti@empa.ch | GRUAN ICM-15

Brunamonti et al., 2023

qSDVP

- within the uncertainty range of the reference (**± 1.5 %**)
- No pressure-dependent bias

Results: Accuracy

H₂O amount fractions

overestimated by up to +5 %

Voigt profile

Results: Precision and long-term stability

- Precision at 1 s resolution better than **30 ppb** H₂O (i.e., 0.1 % at 35 ppm H₂O)
- Best precision of **5 ppb** H₂O achieved by integrating in time ~50 s (Allan minimum)

Brunamonti et al., 2023

In-flight validation

- Two test flights performed with current prototype:
 - Lindenberg (DE), 7 Sept 2022
 - Payerne (CH), 17 Aug 2023 (Swiss H₂O-Hub project)
- Each consisting of two balloons flown simultaneously:
 - ALBATROSS / RS41
 - CFH / RS41 / Others (COBALD, PCFH)
- Burst altitude 28–30 km (balloon size 2000–3000 g)
- Payload recovery mandatory (no telemetry)
 - Careful flight planning and accurate landing point forecast required

ALBATROSS/RS41 payload

In-flight validation

Results: Lindenberg 2022

Altitude [km]

 10^{4}

Results: Paverne 2023

30

25

20

Altitude [km]

15

10

 10^{4}

10³

O RS41

O CFH (Ascent)

O ALBATROSS

Results: Comparison with CFH/RS41

Results: Comparison with CFH/RS41

Altitude [km]

Flight configuration optimization

- Stratosphere: moist bias and large fluctuations observed
 - Real signal (no instrumental artifact)
 - Attributed to internal contamination (i.e., "leakage" of air from instrument box into multipass cell)
- Ongoing design revision of instrument box and intake tube based on CFD simulations

Conclusions and outlook

 We developed ALBATROSS, a lightweight (3.5 kg) mid-IR laser absorption spectrometer for balloon-borne measurements of UTLS H₂O

Laboratory-based validation

- SI-traceable reference gases generated by gravimetric permeation method
- Outstanding accuracy and precision at UTLS-relevant conditions:
 - Accuracy < 1.5 % at 2.5–35 ppm H₂O
 - **Precision < 0.1 %** at 1 s resolution
- Good performance during AquaVIT-4 intercomparison at AIDA chamber (not shown)

In-flight validation

- Troposphere: good agreement with CFH/RS41 (until ~12 km altitude)
- Stratosphere: moist bias, likely due to internal contamination (*work-in-progress*)
- New test flights planned in 2024-2025 within the Swiss H₂O-Hub project

Thanks for your attention!

Acknowledgements

METAS

Tobias Bühlmann Céline Pascale

DWD Lindenberg

Peter Oelsner Susanne Meier Ruud Dirksen

MeteoSwiss Payerne Gonzague Romanens Giovanni Martucci Alexander Haefele

Empa Manuel Graf Philipp Scheidegger Herbert Looser Marco Ravasi ETH Zürich Yann Poltera Frank Wienhold Thomas Peter

Materials Science and Technology

METAS
METAS
GRUAN
MeteoSwiss
Empa

Materials Science and Technology