0

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

MeteoSwiss ozone timeseries

ۣ Eliane Maillard Barras, Rolf Rüfenacht, Alexander Haefele. Gonzague Romanens, Jean-Claude Aubort Luca Egli, Franz Zeilinger, Julian Gröbner (PMOD/WRC, Davos, Switzerland) Eric Sauvageat, Antoine Vadès © ICM-15 at Payerne 20240313 Eliane Maillard Barras

Dobson TCO timeseries: «Arosa/Davos»

On the difference Dobson – Brewer ozone column

Main reasons are:

- Ozone x-sections measured in laboratory
- Temperature sensitivity of the Ozone x-sections
- Measured slits function of Dobson

MeteoSwiss

Dobson Automation

The measurements from multiple instruments are analysed on a daily basis. The ozone daily variation is fitted as a 4th order polynomial of all data within the coincident criteria.

Two variables are calculated for each instrument :

•δi: the offset of the polynomial (bias)

•σi: the standard deviation (random)

The resulting $\Delta ij = \delta i - \delta j$ is the difference between two instruments.

MeteoSv

Figure 5. Daily analysis results: time series of the monthly median of the relative difference $\Delta_{062-101} = \delta_{D_{062}} - \delta_{D_{101}}$ (a) and the individual σ (b) between coincident measurements of the Dobson instruments D_{062} and D_{101} over the period 1992–2012. Calibration campaigns are denoted by the black lines. The shading and the error bars are for the IPR97.5th–2.5th interval.

Figure 7. (a) Time series of the monthly median of $\Delta_{062-101}$ (red) and $\Delta_{051-101}$ (black). (b) Time series of the monthly median of σ_i of D₁₀₁ (blue and light blue), D₀₆₂ (green) and D₀₅₁(orange). The shading and the error bars correspond to the inter-percentile range IPR_{97.5th}-2.5th of the various parameters.

AutoDob : analysis of the Brewer sites comparison

2011 – 2017: coincident Brewer measurements collocated at Arosa, respectively at Arosa and Davos

- Reference column : B040 + B156
- Test inst. B072 Davos or Arosa
- Stray light effect induces a small annual cycle (blue line curvature)
- Partial ozone column from altitude difference (260 m) induces a small offset

No significant differences

MeteoSwiss

Homogenization of the ECC ozone sonde timeseries (2002-2023) following ASOPOS2.0 principles

An electrical current I_M [µA] generated in the external circuit of the electrochemical cell is, after correction for a background current I_B [µA], directly related to the uptake rate of ozone in the sensing solution. By knowing the gas volume flow rate Φ_P [cm³s⁻¹] of the air sampling pump, its temperature T_P [K] and the conversion efficiency of the ozone sensor η_C , the measured partial pressure of ozone P_{O3} [mPa] is determined from Faraday's first law of electrolysis and the ideal gas law and given by the relation:

O $I_{\rm B}$ current, $\Phi_{\rm P}$ flow rate

÷

The I_B current is corrected for an offset of 0.02 uA during the period sept-2002 to

two slope-corrections during 2002-2013 and from 2013 to present correction for the humidification effect

Eliane Maillard

PAY ozone sonde vs satellite

Harmonized O3 retrievals

Satellites-based validation

순

÷

Dobson and Brewer spectrophotometers: Umkehr O3 profiles

Merging 6 collocated timeseries with BASIC

- Remove Artefacts in timeseries: Steps and artificial sub-decadal trends in the underlying instrument data and estimate robust trends
- Use and combine all the information possible to reduce uncertainties of the time-series.

Merged dataset: BASIC (BAyeSian Integrated and Consolidated by Ball et al, ACP, 2017)

순

ት ት

÷

÷

Validation with SBUV satellite and SOMORA MWR

÷

÷

53 ÷ ÷ \$ ÷ ÷ ÷ 5 ÷ ÷ ÷ ÷ ÷ ÷ 수 순 수 ÷ ÷ ÷ ÷ ÷ ÷ ÷ 53 \$ ÷ ÷ \$ ÷ 순 52 5 순 52 \$ ጭ ት **19** ት ÷ ÷ ት ት ት ት ት ት ት ት ት ት ት ት ት ÷ ÷ ÷ * * * **MeteoSwiss** * * * **MeteoSwiss** * * * * * * * * * * * 令 令 令 ÷ \$ \$ \$ \$ \$ ት ት ÷ ት ት ት ÷ ÷ ት ት ÷

순

ት ት

÷