

Sensitivity of Modem M10 temperature measurement to sensor orientation and quality of reflective coating

Christoph von Rohden

15th GRUAN Implementation and Coordination Meeting (ICM-15) 11 Mar - 15 Mar 2024

Lindenberg Meteorological Observatory

Richard-Aßmann-Observatory

2

Observation:

T-inconsistencies (~1 K) in daytime dual soundings with radiosonde Modem M10

• Assumptions / hypotheses:

- 1) *T*-bias due to bent sensor (thermistor, lead wires) \rightarrow Change of solar heating of *T*- sensor (?)
- 2) Damages / abrasions of reflective coating on thermistor identified (microscopic pictures)
 → Expectation: warm bias
- Investigations:
 - M10 dual soundings Nov. 2023 Jan. 2024 in Lindenberg (8)
 - Laboratory experiments using SISTER (13-15 Feb. 2024)

M10 dual soundings

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

3

Wetter und Klima aus einer Hand

DWD

5

No.	Launch / UTC	Cond. Coating	Summary
1	2023-11-21 10:45 (day)	-	Max. <i>T</i> -diff. >1 K
2	2023-11-28 10:52 (<mark>day</mark>)	-	Max. <i>T</i> -diff. ~0.5 K
3	2023-12-12 10:56 (day)	<mark>©</mark> 8	Max. <i>T</i> -diff. ~0.8 K Sensor with damaged coating <i>colder</i>
4	2024-01-10 09:37 (day)	<mark>©</mark> 8	Max. <i>T</i> -diff. ~1.5 K Sensor with damaged coating <i>colder</i>
5	2024-01-11 10:46 (day)	<mark>©</mark> ©	Good
6	2024-01-16* 16:55 (night)	<mark>©</mark>	Good, sensor with damaged coating (little) warmer
7	2024-01-18 10:50 (day)	<mark>©</mark> 8	Good, in contrast to 3) and 4)
8	2024-01-19 10:48 (day)		Good

ICM-15, Session 6-8, 12 March 2024

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

1) Sensor coating: Laboratory measurements

Experimental settings:

- *I* =1073 W m⁻²

279

109, 257

- Constant RS rotation: $T = 15 \text{ s} (\Delta T \text{ averaged})$
- Horizontal incidence (low solar elevation angle)
- Measurement program:

p / hPa	<i>v</i> / m s ⁻¹
50	5.0; 2.0
20	4.5; 2.0
10	3.8; 2.0
5	3.2; 2.0

One RS with intact coating:

279 (damage intent. caused),

Three radiosondes with

damaged coating:

Thermistor (radiosonde 279) with *intact* surface coating

Thermistor (279) with intentionally added damages to surface coating

1) Sensor coating: Results

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- ΔT linearly scaled acc. to irradiance of 1361 Wm⁻²
- Alignment of boom and sensor as in normal operation (40°)
- Observed variance in ΔT : 0.0 K ... 0.6 K

ead Centre

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

7

2) Sensor orientation: Laboratory measurements

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Experimental settings:

- I =1073 W m⁻²
- Rotation: $T = 15 \text{ s} (\Delta T \text{ evaluated as average over rotation})$
- Horizontal incidence (low solar elevation angle)
- Same unit (Ser.-No. 205 2 12279)
- Measurement program:

p / hPa	<i>v</i> / m s⁻¹
50	5.0; 2.0
20	4.6; 2.0
10	3.8; 2.0
5	3.2; 2.0

- Measurement runs for three orientation settings of the sensor tip

Lindenberg Meteorological Observator Richard-Aßmann-Observatory

2) Sensor orientation: Results

- ΔT linearly scaled to I =1361 Wm⁻²
- Variance in ΔT : ≤ 0.3 K
- $\Delta T = combined$ effect of rad. heating (linear in *I*) and conv. cooling (nonlinear in *p*, *v*)
- Albedo: diffuse radiation
 → other directional sensitivity (smaller?)
- Lateral bending of thermistor not investigated

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICM-15, Session 6-8, 12 March 2024

Lindenberg Meteorological Observatory Richard-Aßmann-Observatory

Effect of coating damages

- Warm bias expected
- Finding: Inconsistent picture from both dual soundings and laboratory tests
- \rightarrow (Small) coating damages of minor significance?
- Orientation
 - Bending the sensor systematically changes response to direct radiation in experiments
 - → Effect too small to fully explain observed *T*-biases in dual soundings

Explanation/Hypothesis: Sensor size effect

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Radiation error may vary significantly with (small) variation ٠ in **sensor size**:

 \rightarrow Laboratory tests to be set up to quantify the variability of the • radiative error over a sufficient number (of batches) of radiosondes under constant conditions. $(\rightarrow any RS model)$

Operational radiosoundings in GRUAN:

Proper orientation of sensor and sensor boom important! $(\rightarrow \text{ any RS model})$

- Potential usage of *existent* Modem M10 *T*-measurements in GRUAN: ٠
 - Can a "representative" uncertainty be estimated which reflects the *T*-biases observed in the comparing flights? $(\rightarrow \text{ assumption: cause of bias is 'random'})$
 - Can a daytime *T*-correction be applied? $(\rightarrow$ requires systematic effect)
- What (overall) uncertainty for a variable can be accepted in GRUAN? $(\rightarrow any measurement instrument)$

