

GRUAN / ICM-15 Modem M10 GDP progression and results overview

<u>JC. Dupont (</u>IPSL), A. Farah (MODEM), P. Jann (Meteo-France) <u>jean-charles.dupont@ipsl.fr</u>

ICM-14 conclusions for Modem M10 GRUAN

- WHAT : Perform assessment of the data quality issues highlighted in Payerne parallel flights and assess whether it is feasible that M10 sondes can be processed to GRUAN products
- **HOW** : Further assessment of Modem M10 characterization including various parallel flights including M10-M10 paired flights to understand more fully data repeatability
- BY WHOM : Modem, Meteo-France, IPSL, Lead Center, Meteoswiss
- **BY WHEN** : ICM-15

12/03/2024

Outline of the presentation

M10 Temperature Reproducibility issues

- Observation and problem identification
- Coating effect for day/night & solution
- Bending effect for day/night & solution
- Conclusions

Status of M10 GRUAN Data Product

- Suggestion for M10 certification
- M10 dataflow

Metrics at Faa'a site

Conclusions and Perspectives

1- Observations and problem

Coating problem

2- Coating Effect - M10 vs M10 flights

12/03/2024

Set-up

2- Coating Effect - M10 vs M10 flights

Flight & Config & Day

Flight #	Date (dd/mm/yyyy)	# of M10	Fixing	Configuration
1	16/05/2023	3	Scotch	OK- <mark>KO</mark> -OK
2	30/05/2023	3	Scotch	OK- <mark>KO</mark> -OK
3	01/03/2023	3	Rope	OK- <mark>KO</mark> -OK
4	03/03/2023	3	Scotch	KO-OK-OK
5	07/04/2023	3	Scotch	OK-OK- <mark>KO</mark>

OK: un-damaged T-sensor KO: damaged T-sensor

2- Coating Effect - M10 vs M10 flights

2- Coating Effect - M10 vs M10 flights

ICM15 Meeting

Results, day

agreement between the two M10. vs KO: A linear increase OK in temperature difference with altitude is seen, peaking at Δ =0.8k at 26 km (for certain soundings).

Summary:

Coating problem black stain on T sensor L more solar absorption higher temperature for $T_{\kappa \cap}$

12/03/2024

2- Coating Effect - M10 vs M10 flights

* *

Flight & Config & Night

Flight #	Date (dd/mm/yyyy)	# of M10	Fixing	Configuration
1	20/02/2024	3	Rope	A: [OK + 0°] B: [OK + 90°] C: [<mark>KO</mark> + 0°]
2	28/02/2024	3	Rope	A: [OK + 0°] B: [OK + 90°] C: [KO + 0°]

OK: un-damaged T-sensor **KO**: damaged T-sensor

2- Coating Effect - M10 vs M10 flights

Results, Night

OK vs KO: No bias, no tendency between two M10.

Summary:

The issue with the temperature sensor coating has no impact on temperature measurements.

12/03/2024

3- Coating problem - origine

Packaging Before June 2023

3- Coating problem - solution

Packaging After June 2023

There is no contact between the temperature sensors

12/03/2024

4- Bending problem ?!

Bending problem A

Bending problem B

4- Bending Effect A

Set-up

<u>Flights</u> : #1 : 03/09/2022 #2 : 06/09/2022

Summary:

The temperature variances exhibit symmetry around zero in both setups (#1 and #2). This implies that this bending shape of the temperature sensor wire has no impact on temperature measurements.

ICM15 Meeting

12/03/2024

5- Bending Effect B

<u>Set-up</u> : Tilt compared to the sensor boom

12/03/2024

5- Bending Effect B - M10 vs M10 flights

Flight & Config & Day

Flight #	Date (dd/mm/yyyy)	# of M10	Fixing	Configuration (°)
1	21/12/2022	3	rope	0-0-90
2	26/01/2023	3	rope	0-0-45
3	27/01/2023	4	rope	0-0-45-90
4	26/07/2023	3	scotch	0-45-90
5	07/08/2023	3	scotch	0-45-90

5- Bending Effect B - M10 vs M10 flights

5- Bending Effect B - M10 vs M10 flights

5- Bending Effect B Results, day

0° vs 0°: There is a strong temperature correlation between two M10

0° vs 45°: A linear increase in temperature difference with altitude is observed, reaching $\Delta = 0.7$ k at 33 km.

0° vs 90°: A linear increase in temperature difference with altitude is seen, peaking at $\Delta = 1.5$ k at 33 km (for certain soundings).

Summary:

Bending problem B has a « cooling » impact on the temperature, much cooler for 90° compared to 45°.

Why?

- ✓ Sensor boom shadow on the T sensor ?
- Different reflexion between T sensor and M10 box

12/03/2024

5- Bending Effect B - M10 vs M10 flights

Flight & Config & Night

Flight #	Date (dd/mm/yyyy)	# of M10	Fixing	Configuration (°)
1	20/02/2024	3	Rope	A: [OK + 0°] B: [OK + 90°] C: [KO + 0°]
2	28/02/2024	3	Rope	A: [OK + 0°] B: [OK + 90°] C: [KO + 0°]

5- Bending Effect B - M10 vs M10 flights

Results, night

0° vs 90°: There is a strong temperature correlation between two M10

Summary:

The orientation of the temperature sensor has no influence on temperature measurements.

12/03/2024

	Bending effect A	Bending effect B	Coating effect	
-`ᢕ`-		Colder	Warmer	
,,,	~ 0	max 0.7k @ 33km for 45° max 1.5k @ 33km for 90°	max 0.8k @ 26km	
* *				
	~ 0	~ 0	~ 0	
			PG: L=17 163 nm L=6280 nmr2 L=6281 nm L=6281 nm L=6281 nm/2.	

Status of M10 GRUAN Data Product

• Suggestion for M10 certification

Period	Before June 2023		After June 2023	
Day/night Variables	-ờ		Ņ	
Pressure			\bigcirc	
Wind			\checkmark	\checkmark
Relative humidity			\bigcirc	
Temperature	×		\bigcirc	

For the M10 certification, we would like to send the technical document (1) for all the variables, (2) for day and night sounding, and (3) for the whole period ; **except for** temperature where we recommand not to use the daytime launch before June 2023 (new packaging technic), due to possible bias reaching max value around 2°C.

Take home message : if T-sensor is non-damaged and align with the sensor boom, reproducibility is perfect for day & night !

Status of M10 GRUAN Data Product

M10 dataflow

- M10 GDP production is ensured by AERIS Data Center
- M10 GDP data flow is monitoring with GRAFANA software
- Since more than 2 years, M10-GDP processing is automatic for TRP and REU operationnal sites
- Since October 2022, M10 L1 Product processing is automatic for FAA operationnal site
- Since last week, M10-GDP processing is automatic for specific sites like Payerne or Lindenberg

12/03/2024

Faa'a statistics since Oct. 2022

MODEM robotsonde since october 2018 ... with GRUAN procedures (GC) since october 2022

In 2023 : 703 M20 profiles (raw data availability L1)

Conclusions

GRUAN

(2)

X

(1)

Take Home Message

Reproducibility issue has been identified :

- (1) Coating problem
- (2) Bending problem

AND solutions have been implemented :

- (1) new packaging
- (2) revised set-up before launch

ICM15 Meeting

12/03/2024

Perspectives

- <u>Step 1</u>. Find an optimal solution for MODEM M10 GDP certification. We have to take some decisions on :
 - Variables (P, T, U, V)
 - Period (before/after June 2023)
 - Day/Night (solar effect)

 \Rightarrow M10 GDP submission before mid of 2024 !

- **<u>Step 2</u>**. Start the certification for MODEM M20
- Ensure/Monitor the M10 GDP data flow for operationnal sites (TRP, REU, ?).
- Ensure/Monitor the M20 L1 data flow for non-operationnal sites (LIN, PAY, ?).

Questions?

Thank you for your attention

