# Reference Humidity Retrievals with 'Dry Ice' CFH during the Swiss H<sub>2</sub>O Hub Summer 2023 campaign



Yann Poltera, Frank G. Wienhold, Thomas Peter (ETH Zürich) Steven Brossi, Thomas Brossi (mylab elektronik) Gonzague Romanens (MeteoSwiss)

GRUAN ICM-15, Bern, Tue 12 March 2024

### Swiss H<sub>2</sub>O Hub Consortium

- 1.Uni Bern: **MIAWARA** microwave radiometer, *remote sensing*
- 2.MeteoSwiss: **RALMO** Raman lidar, *remote sensing*
- 3.Empa: **ALBATROSS** mid-IR laser spectroscopy, *in-situ*
- 4.ETH Zürich: **PCFH** Peltier-cooled frost point hygrometer, *in-situ*
- 5.References: CFH, RS41, MLS

#### **Target Objectives**

- combine in-situ and remote sensing of H<sub>2</sub>O from 0 km to 80 km
- from development/testing towards monitoring
- towards SI traceability, low drift, high accuracy



MeteoSwiss



**ETH** zürich

Volcanic  $H_2O$  injections:  $O_3$  depletion (Evan et al., 2023) <sup>25 km</sup>

UT/LS H<sub>2</sub>O: strong <sup>15</sup> radiative forcing & feedback (Solomon et al., <sup>~12</sup> 2010; Dessler et al., 2013) <sub>10</sub>





#### also funded by the Federal Office for the Environment



### **ETH**zürich H<sub>2</sub>O Hub Auxiliary Reference Measurements: RS41

Quality check for CFH, 0 km to ~ tropopause

#### **RS41** radiosonde



- Operational radiosonde
- High-performance thin-film humidity sensor
- Plug-and-play, weather robust...
  - Not SI-traceable
- 2023-0817-21UT PAY H2OHUB-002 17.5 km 440 440 **RS41** CFH Sensitivity loss **RS41 on ALBATROSS** 420 420 RS41 on CFH Stratosphere OVERWORLD 400 400 **RS41** 14.0 km 380 380 Sonde-to-Sonde ∑ ⊕ 360 Variability 360 Lowermost **MIDDLEWORLD** Stratosphere **RS41** 340 340 11.5 km Systematic Errors time-lag 320 320 overcorrection UNDERWORLD biases at low-RH Troposphere 300 300  $10^{2}$  $10^{3}$  $10^{4}$ -60  $10^{1}$ -40 -20 0 20 Air Temperature [C] dual balloon sounding H<sub>o</sub>O [ppmv] CFH/PCFH & ALBATROSS
  - Systematic errors (time-lag and sensor model errors, e.g. Poltera Diss.ETH 28342, 2022)
  - Sonde-to-sonde variability deteriorates accuracy in lowermost stratosphere (e.g. Brunamonti et al., 2019)
  - Not suited for dry stratosphere, sensitivity loss at < 1.5 2 %RH (e.g. Vömel et al., 2022)</p>

### **ETH**zürich H<sub>2</sub>O Hub Auxiliary Reference Measurements: MLS

Quality check for CFH, ~ tropopause to ~ 28 km (and beyond)

#### **Microwave Limb Sounder (MLS)**



Schoeberl et al., 2006

- Microwave radiometer onboard NASA's AURA satellite
- Launched in 2004
- Global coverage, 12-h revisit time, from UT/LS up to mesopause



MLS v5 vs. FPH, Livesey et al., 2021

- Limited vertical resolution: ~ 1 km in the UTLS
- Collocation Uncertainty: ~ 1°
- Subject to drifts (Hurst et al., 2016; Livesey et al. 2021). MLS v5.0: drift still remaining (5-8 % / decade), starting around 2010 (compared to FPH).

### **ETH** zürich H<sub>2</sub>O Hub Field Reference: Cryogenic Frostpoint Hygrometer



- Balloon-borne, SI-traceable, high DR, low drift chilled mirror
- State-of-the art detector for H<sub>2</sub>O measurements in the UT/LS (Fahey et al., 2014)
- Uncertainty

< 10 % up to 28 km (Vömel et al., 2007) < 4 % under stable frost control (Hall et al., 2016) or at Golden Points (Poltera et al., 2021)



- Quality checks needed after each flight contamination (Jorge et al., 2021) controller instabilities (Vömel et al., 2016)
- Demanding logistics / not plug-and-play cold liquids, dry ice, glue, ...



 Uses HFC-23 (~ 7 t CO<sub>2</sub> per sounding) alternative coolant needed (UNEP, 2016) R23 bottle in dry ice at ETHZ

Replacement of R23 with dry ice + alcohol (**DIA**) or **LN2 in a pressurized vessel** have given promising results (e.g. Rolf et al., ICM-12 2020; ICM-14 2022). In *Swiss*  $H_2O$ -Hub, DIA was tested on 4 out of 7 balloon flights. **Goal:** fly 'as many CFHs as we need' (specially for test / engineering flights of PCFH and/or ALBATROSS) without emptying our limited R23 reserve.



CFH DIA prototype (Rolf et al., ICM-12, 2020).



CFH LN2 prototype (Rolf et al., ICM-12, 2022).

### Dry Ice + Alcohol (DIA) CFH @ ETHZ

<u>Note</u>: DIA is not new (e.g. Thornwaite & Owen, 1940). Has been successfully tested on CFH/FPH before (e.g. GRUAN LC/NOAA/FZ Jülich, ICM-12, 2020).

Fit tightly an aluminum plate below the cold finger (file if necessary)

 Fill CFH Dewar with ~ 100 ml of precooled ethanol (94% Brennsprit), until cold finger is well covered

 Add handful of dry ice (16 mm pellets used to pre-cool the ethanol) into the Dewar



EN-SCI CFH, FW: 6.44 with added AI plate



Optional: \* T-logger (here RS41)



Optional: \* 'spill proof' lid mechanism

Fly& Recover



MeteoSwiss colleagues in action



 Perform Golden Points analysis



Poltera, 2022 Diss. ETH No. 28342 In prep. for AMT 2024



### **Table Overview of CFH Measurements in Switzerland**

conducted by ETHZ in last 10 years

| Date           | S/N    | Coolant   | Radiosonde | Additional telemetry                    | Other instruments                         | Note                                                                  |
|----------------|--------|-----------|------------|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|
| 2015-1201-18UT | 2L3605 | R23       | Imet-1 RSB |                                         | COBALD                                    |                                                                       |
| 2016-0202-15UT | 2L4513 | R23       | RS41-SGP   |                                         | O3                                        |                                                                       |
| 2016-0607-19UT | 2L4811 | R23       | RS41-SGP   |                                         | O3                                        |                                                                       |
| 2023-0629-07UT | 2L6129 | R23       | Imet4-RSB  | PCFH-LOG                                | PCFH, HABBounder                          | PCFH-LOG w/o CFH                                                      |
| 2023-0720-08UT | 2L6129 | R23       | Imet4-RSB  | PCFH-LOG                                | PCFH, HABBounder                          | PCFH-LOG w/o CFH                                                      |
| 2023-0815-20UT | 2L6129 | R23       | RS41-SG    | Imet4-RSB                               | PCFH, HABBounder                          | PCFH-LOG failed                                                       |
| 2023-0817-21UT | 2L7314 | R23       | RS41-SG    | PCFH-LOG, Imet4-RSB                     | PCFH, HABBounder                          | ALBATROSS + RS41-SG + Accelerometer +<br>HABBounder on tandem balloon |
| 2023-0822-20UT | 2L7314 | R23       | RS41-SG    | PCFH-LOG, Imet4-RSB                     | PCFH, HABBounder                          |                                                                       |
| 2023-0824-13UT | 2L6129 | DIA       | RS41-SG    |                                         | ActionCam                                 | DIA w/o Alu plate                                                     |
| 2023-0829-21UT | 2L6219 | DIA       | RS41-SG    | PCFH-LOG, Imet4-RSB<br>RS41-SG Tgps     | PCFH, HABBounder, ActionCam+Accelerometer | DIA w/o Alu plate                                                     |
| 2023-0904-13UT | 2L7314 | DIA + LN2 | RS41-SG    | RS41-SG Tcoolant                        | Accelerometer+ActionCam                   | DIA w/o Alu plate                                                     |
| 2023-0906-22UT | 2L7314 | DIA + LN2 | RS41-SG    | PCFH-LOG, Imet4-RSB<br>RS41-SG Tcoolant | PCFH, Accelerometer+ActionCam             |                                                                       |
| 2023-1219-18UT | 2L7314 | DIA       | Imet4-RSB  | PCFH-LOG                                | PCFH, HABBounder, Accelerometer+ActionCam |                                                                       |
| 2024-0223-10UT | 2L7314 | DIA       | Imet4-RSB  | PCFH-LOG                                | PCFH                                      |                                                                       |
| 2024-0229-17UT | 2L7314 | DIA       | Imet4-RSB  | PCFH-LOG                                | PCFH                                      |                                                                       |

#### As of March, 2024: 8 x R23 CFH, 7 x DIA CFH

### R23 vs DIA Cleaning Cycle @ -53°C

#### Recall:

- CFH clears mirror @ Tmirror = -53°C to form a new ice layer with fine Ih crystals for the stratosphere
  - (1) ~7 s heat pulse
  - (2) full cooling power until ice layer formed (Umirror = 2.5 V)
- Ice layer quality influences the sensitivity (or 'response time') of the instrument in the UT/LS

#### Observations:

 ice nucleation cooling rates DIA (~ 3.9 K/s) vs. R23 (~ 6.0 K/s)
 = 65 % of R23 cooling power

fits well to minimum achievable Tmirror DIA (~ - 80°C) vs. R23 (~ -95°C): (-53+80) / (-53+95) = 64%

 ~ 3 x as long to recover from cooling cycle (with 6.44 'R23' firmware')

Observations are consistent with Dirksen et al., ICM-12, 2020 and Rolf et al., ICM-12, 2020 findings.



### **R23 vs. DIA RAW Temperature Profiles**

unprocessed, raw ascent and descent, all-weather campaign data, in order to show raw mirror temperature values. -> contamination , non-ideal descent flow, etc., that we would normally flag as bad in post-processing.



9

### **ETH** zürich Air flow influence on minimum achievable mirror temperature

#### Zürich, 2024-0223-10UT PCFH+CFH sounding

- Low CFH Toptics (out of spec.), drift in clean reflex signal (probably insulation issue during launch prep.).
- Full cooling power (PWM=0%) of 2<sup>nd</sup> cleaning cycle uninterrrupted until after balloon burst.

Tmirror << frost point, measured here accurately by **PCFH** up to 35 hPa with stratospheric PID parameters.

Tmirror(PWM=0%)  $\approx$  TCO2Bath + 8°C because convective heating from air flow.

#### **Conclusions**

- Cooling power is enough for mid-latitudes (e.g. Hall and Hurst, ICM-14, 2022).
- Still enough for tropical tropopause with low frost point or high-latitude summer / SSW events with large frost point depressions in the stratosphere (?)
  - Boost DIA with liquid nitrogen in such cases(?)



### **DIA CFH Validation Flight**

#### Payerne, 2023-0906-22UT DIA CFH sounding

- Measurements up to ~ 27 km. Similar humidity features as RS41.
- In stratosphere, descent data validates the ascent data, with similar shape as MLS v5.



### **DIA CFH Reference Humidity Retrievals**

#### RS41/CFH data processing for high-resolution, low uncertainty retrievals

 Identify CFH "Golden Points" (i.e. maxima and minima in reflectivity profile)

**ETH** zürich

- Apply improved time-lag (arrhenius-type) and bias correction to RS41 using CFH Golden Points
- Apply non-equilibrium error correction to CFH:

 $p_{H_2O,corr}(t) = p_{H_2O}(t) - \frac{B(t)}{A} \cdot \frac{dU}{dt}$ with sensitivity constant  $A \ln \frac{mV}{\mu g cm^{-2}}$ estimated from corrected RS41

Poltera, Diss. ETH No. 28342, **2022** In prep. for AMT, 2024.



### Conclusions

- DIA CFH implemented, tested and validated during the H<sub>2</sub>O Hub Summer Campaign 2023.
- Same quality of CFH reflex signal (<0.1 mV noise during night time) and same mirror temperature calibration accuracy (<0.11 K on ice films) as R23 CFH</li>
  Colden Point engly a set reference by midity retrievale are possible.
  - → Golden Point analysis and reference humidity retrievals are possible.
- Simpler logistics than R23, negligible GWP.
- Non-intrusive hardware modification and similar weight as with R23.
- Slush of ethanol and dry ice evaporates/sublimates only **slowly**.
- ~ 3 x slower second cooling cycle with ~ 35 % slower cooling rate during ice nucleation (with standard 'R23' firmware 6.44)

→ non-equilibrium mirror excursions typically larger than with R23 (flight dependent). Hypothesis: slightly less and slightly larger ice crystals formed during  $2^{nd}$  cleaning cycle compared to R23 CFH.

 General precautionary measures are still valid: risk of contamination in mixed phase clouds, increased noise in daytime measurements, not plug and play (dry ice delivery, handling with cold liquids, gluing of tubes). GoPro camera onboard Swiss  $H_2$ O-Hub Balloon Flight 006 (4 September 2023) View of Lake Geneva from 32 km altitude

## Thank you for your attention!

**Acknowlegements** 

**ETH Zürich** Vivienne Artho, Beiping Luo, Ulrich Krieger, Nir Bluvshtein **MeteoSwiss** Alexander Haefele, Giovanni Martucci, Jean-Claude Aubort, Gaetan Huguenin-Benjamin, Ludovic Renaud **EMPA** Simone Brunamonti, Béla Tuzson, Lukas Emmenegger UniBe Gunter Stober, Alistair Bell, Adrianos Filinis, Renaud Matthey DWD Tatjana Naebert, Peter Oelsner



14