Calibration of radiosonde humidity sensors at air ventilation speed of 5 m·s⁻¹

Mar. 12, 2024

GRUAN ICM-15

Sang-Wook Lee, Ph. D

Division of Physical Metrology,

Korea Research Institute of Standards and Science (KRISS)

*E-mail: sangwook@kriss.re.kr

Upper air simulator (UAS) at KRISS

- **Radiation correction of radiosonde temperature sensors**
 - Control of temperature, pressure, ventilation, and irradiance (using dry air)
- Evaluation of radiosonde humidity sensors
 - Control of temperature and relative humidity at 1000 hPa

Effect of heater of RS41 humidity sensor

Heater affects reference thermometers

Air ventilation speed in the test cell was 1 L/min (~0.02 m/s)

Modification of humidity test cell

Layout of UAS humidity setup

Saturation capacity of the saturator

□ Input gas with different humidity levels

Saturation capacity of the saturator at 30 L/min (> 5 m/s in test cell) is checked.

Uncertainty of UAS humidity setup

Generated vapor pressure Pressure ratio

RH =
$$\frac{e_{ws}(T_s)}{e_{ws}(T_t)} \times \frac{f(T_s, P_s)}{f(T_t, P_t)} \times \frac{P_t}{P_s} \times 100 \,(\% \text{rh})$$

Saturation vapor pressure

 $T_{\rm s}$ = saturator temperature, $P_{\rm s}$ = saturator pressure $T_{\rm t}$ = test chamber temperature, $P_{\rm t}$ = test chamber pressure $e_{\rm is}(T_{\rm s})$ = saturation vapour pressure over ice in saturator $e_{\rm ws}(T_{\rm t})$ = saturation vapour pressure over water in test chamber

 $f(T_s, P_s)$ = enhancement factor in saturator

 $f(T_t, P_t)$ = enhancement factor in test chamber

Table 2. Uncertainty budget on relative humidity of UAS at $T_t = -67.8$ °C.

Relative humidity at $T_{\rm t} = -67.8 {}^{\circ}{\rm C}$	%rh	9.5	19.0	28.3	37.4	9.5	19.0	28.3	37.4	9.5	19.0	28.3	37.4	
Uncertainty component	Unit	Unit Standard uncertainty					Sensitivity coefficient				Contribution to uncertainty			
Saturator temperature, $u(T_s)$	°C	0.027	0.027	0.027	0.027	1.549	2.958	4.289	5.565	0.042	0.080	0.116	0.150	
Saturator pressure, $u(P_s)$	kPa	0.177	0.177	0.177	0.177	0.093	0.185	0.275	0.363	0.016	0.033	0.049	0.064	
Saturation vapour pressure in saturator, $u_{\rm r}(e_{\rm is}(T_{\rm s}))$	Pa	0.00014	0.00025	0.00036	0.00046	139.823	139.527	139.689	139.116	0.019	0.036	0.050	0.064	
Enhancement factor in saturator, $u_r(f(P_s,T_s))$		0.00049	0.00046	0.00044	0.00043	9.474	18.911	28.130	37.185	0.005	0.009	0.012	0.016	
Test chamber temperature, $u(T_t)$	К	0.063	0.063	0.063	0.063	-1.301	-2.596	-3.861	-5.102	-0.082	-0.164	-0.243	-0.321	
Test chamber pressure, $u(P_t)$	kPa	0.182	0.182	0.182	0.182	0.095	0.189	0.281	0.371	0.017	0.034	0.051	0.068	
Saturation vapour pressure in test chamber, $u_t(e_{ws}(T_t))$	Ра	0.002	0.002	0.002	0.002	13.623	27.138	40.411	53.200	0.032	0.063	0.094	0.124	
Enhancement factor in test chamber, $u_r(f(T_t,P_t))$		0.00081	0.00081	0.00081	0.00081	-9.485	-18.928	-27.975	-37.207	-0.008	-0.015	-0.023	-0.030	
Saturator efficiency, <i>u</i> (Efficiency)	°C	0.006	0.006	0.006	0.006	1.547	2.955	4.285	5.562	0.010	0.019	0.027	0.036	
Adsorption/desorptio n, u(Ads./Des.)	°C	0.100	0.100	0.060	0.060	1.547	2.955	4.285	5.562	0.155	0.296	0.257	0.334	
Combined standard uncertainty, u _c (RH) (k=1)	%rh									0.2	0.4	0.4	0.5	
Expanded uncertainty, u(RH) (k=2)	%rh									0.4	0.7	0.8	1.0	

Lee et al. Meteorol. Appl. 28, e2010 (2021)

Operation of UAS humidity setup

Temperature of reference thermometer

Difference between reference PRT and RS41 is within the uncertainty of the PRT

RS41 RH measurement

UAS RH generation vs. RS41 RH measurement

Reproducibility & Individuality

Reproducibility & Individuality of RS41

Response time; high RH

- Sorption/desorption of water at varying temperatures
 - Temperature of test cell = (-67 +20) °C
 - Pressure of test cell = 1000 hPa
 - Air ventilation rate in test cell = 5 m/s
 - (Condensing RH 10) %rh at each temperature

Response time; high RH

□ Fitting with a double exponential function

 $U(t) = U_{\infty} - (U_{\infty} - U_0)[a(T) \cdot \exp(-(t - t_0)/\tau_{\text{short}}(T)) + (1 - a(T)) \cdot \exp(-(t - t_0)/\tau_{\text{long}}(T))]$

 au_{short} for sorption and desorption are similar.

Response time; low RH

High RH vs. Low RH (half of high RH)

Time constants for low and high RH are similar. But, the share of τ_{short} for low RH is slightly smaller.

Response time; average of high & low RH

Formulation with a single exponential function

Summary

RS41 RH measurement at 5 m·s⁻¹ using the UAS

- UAS humidity setup was modified to produce $v = 5 \text{ m} \cdot \text{s}^{-1}$.
- Effect of the heater was reduced at 5 m·s⁻¹ (\rightarrow Ref. PRT \approx RS41 T-sensor).
- Reproducibility of a single unit of RS41 was tested (Max. S.D. = 0.4 %rh).
- Individuality was tested using another unit (Max. difference = 5.3 %rh).

Response time during sorption and desorption

- Response time was measured using high RH and low RH.
- Measurement curves were fitted with a double exponential function (τ_{short} , τ_{long} , and *a*).
- τ_{short} and τ_{long} for high and low RH were similar but, the share for τ_{short} (a) is slightly lower at low RH.
- The mean of τ_{short} , τ_{long} , and *a* were formulated for time-lag correction.

Thank you for your attention.

Questions or comments?