Satellite imagery downloader

Fabrizio Marra

National Research Council – Institute of Methodologies for Environmental Analysis (CNR-IMAA)

Objective

Use high-resolution satellite imagery to provide a picture of the land cover around each GRUAN site through Python software, as follows:

Satellite technical specifications

- The Python software works with any raster map that uses **Web Mercator** (de facto standard for web mapping applications), including Google Maps, Esri, OpenStreetMap and many others.
- Default satellite used in the software: Google Maps satellite imagery (<u>https://mt.google.com/vt/lyrs=s&x={x}&y={y}&z={z})</u>.
- Additional satellites that can be used in the software:
 - OpenStreetMap (<u>https://tile.openstreetmap.org/{z}/{x}/{y}</u> or <u>https://tile.osmand.net/df/{z}/{x}/{y}</u>);
 - Esri satellite imagery
 (https://services.arcgisonline.com/arcgis/rest/services/World_Imagery/MapServer/tile/{z}/{
 y}/{x})
- Map data update: the map is updated constantly every second of every day collecting new information, whether from satellite imagery or Street View cars.
- Software data policy: MIT License, Copyright © 2022 and olg.

Images technical specifications

- Image resolution: 19 different levels, as shown in the table on the right (For more information see: <u>https://learn.microsoft.com/en-</u> <u>us/bingmaps/articles/understandin</u> <u>g-scale-and-resolution</u>);
- Image format: PNG;
- Image size: depending on the chosen resolution and the selected area.

Zoom Level	Scale (m/pixel)	Zoom Level	Scale (m/pixel)
1	78271.52	11	76.44
2	39135.76	12	38.22
3	19567.88	13	19.11
4	9783.94	14	9.55
5	4891.97	15	4.78
6	2445.98	16	2.39
7	1222.99	17	1.19
8	611.50	18	0.60
9	305.75	19	0.30
10	152.87		

Additional satellite image download software

The following software were also used to download satellite images:

• SENTINEL API

(<u>https://github.com/dlecorre387/Sentinel2ImageDownload?tab=readme-ov-file</u>);

• **Google Earth Engine** (<u>https://earthengine.google.com/</u>)

Currently, we chose to use the Python software presented for downloading satellite images because it is considered the most efficient.

Thank you for your attention!

Acknowledgments: This work was supported by IR0000032 – ITINERIS, Italian Integrated Environmental Research Infrastructures System (D.D. n. 130/2022 - CUP B53C22002150006) Funded by EU - Next Generation EU PNRR-Mission 4 "Education and Research" - Component 2: "From research to business" - Investment 3.1: "Fund for the realisation of an integrated system of research and innovation infrastructures"

